Shuohong Wang, Xiang Liu, Jingwen Zhao, Ye Liu, Y. Chen
{"title":"3D tracking swimming fish school using a master view tracking first strategy","authors":"Shuohong Wang, Xiang Liu, Jingwen Zhao, Ye Liu, Y. Chen","doi":"10.1109/BIBM.2016.7822572","DOIUrl":null,"url":null,"abstract":"3D motion data of fish school is more valuable than 2D data for behavior and other researches. This paper proposes to use a master view tracking first strategy based on a novel master-slave camera setup. On this basis, fish are firstly tracked in master view in 2D after being extracted via an eye-focused Gaussian Mixture Model (E-GMM) detector. Then 3D trajectories are reconstructed by associating 2D tracking results in master view and detection results in slave views after fish in slave views are localized using an eye-focused Gabor (E-Gabor) detector. Experiments on data sets with different fish densities demonstrate that the proposed method outperforms two state-of-the-art methods in terms of 5 evaluation metrics.","PeriodicalId":345384,"journal":{"name":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2016.7822572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
3D motion data of fish school is more valuable than 2D data for behavior and other researches. This paper proposes to use a master view tracking first strategy based on a novel master-slave camera setup. On this basis, fish are firstly tracked in master view in 2D after being extracted via an eye-focused Gaussian Mixture Model (E-GMM) detector. Then 3D trajectories are reconstructed by associating 2D tracking results in master view and detection results in slave views after fish in slave views are localized using an eye-focused Gabor (E-Gabor) detector. Experiments on data sets with different fish densities demonstrate that the proposed method outperforms two state-of-the-art methods in terms of 5 evaluation metrics.