{"title":"Handwritten character recognition using elastic matching based on a class-dependent deformation model","authors":"S. Uchida, H. Sakoe","doi":"10.1109/ICDAR.2003.1227652","DOIUrl":null,"url":null,"abstract":"For handwritten character recognition, a new elastic image matching (EM) technique based on a class-dependent deformation model is proposed. In the deformation model, any deformation of a class is described by a linear combination of eigen-deformations, which are intrinsic deformation directions of the class. The eigen-deformations can be estimated statistically from the actual deformations of handwritten characters. Experimental results show that the proposed technique can attain higher recognition rates than conventional EM techniques based on class-independent deformation models. The results also show the superiority of the proposed technique over those conventional EM techniques in computational efficiency.","PeriodicalId":249193,"journal":{"name":"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.","volume":"162 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2003.1227652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
For handwritten character recognition, a new elastic image matching (EM) technique based on a class-dependent deformation model is proposed. In the deformation model, any deformation of a class is described by a linear combination of eigen-deformations, which are intrinsic deformation directions of the class. The eigen-deformations can be estimated statistically from the actual deformations of handwritten characters. Experimental results show that the proposed technique can attain higher recognition rates than conventional EM techniques based on class-independent deformation models. The results also show the superiority of the proposed technique over those conventional EM techniques in computational efficiency.