Failure Inference for shortening traffic Detours

Anmin Xu, J. Bi, Baobao Zhang, Shuhe Wang, Jianping Wu
{"title":"Failure Inference for shortening traffic Detours","authors":"Anmin Xu, J. Bi, Baobao Zhang, Shuhe Wang, Jianping Wu","doi":"10.1109/IWQoS.2017.7969163","DOIUrl":null,"url":null,"abstract":"To speed up the recovery from network failures, an extensive list of methods have been proposed. Many failure-recovery methods are proposed based on tunneling or marking, which increase the packet processing burden on routers and consume extra bandwidth. With neither tunneling nor marking, existing methods guarantee recovery from any single-link failure if a detour for the failed link exists, but they generate long traffic detours that will degrade the network performance, and even increase the operational cost, which is undesirable to network operators. Therefore, in this paper, we propose a Failure Inference approach to shortening Traffic Detours named as FITD, which works in OSPF/IS-IS networks. FITD does not use explicit failure notification, and can infer which link fails based on traffic information. FITD guarantees recovery from any single-link failure if a detour for the failed link exists. In particular, for networks with symmetric link weights, FITD guarantees to generate shortest detours for any single-link failure.","PeriodicalId":422861,"journal":{"name":"2017 IEEE/ACM 25th International Symposium on Quality of Service (IWQoS)","volume":"133 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACM 25th International Symposium on Quality of Service (IWQoS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWQoS.2017.7969163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

To speed up the recovery from network failures, an extensive list of methods have been proposed. Many failure-recovery methods are proposed based on tunneling or marking, which increase the packet processing burden on routers and consume extra bandwidth. With neither tunneling nor marking, existing methods guarantee recovery from any single-link failure if a detour for the failed link exists, but they generate long traffic detours that will degrade the network performance, and even increase the operational cost, which is undesirable to network operators. Therefore, in this paper, we propose a Failure Inference approach to shortening Traffic Detours named as FITD, which works in OSPF/IS-IS networks. FITD does not use explicit failure notification, and can infer which link fails based on traffic information. FITD guarantees recovery from any single-link failure if a detour for the failed link exists. In particular, for networks with symmetric link weights, FITD guarantees to generate shortest detours for any single-link failure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
缩短交通绕行的失效推理
为了加快从网络故障中恢复的速度,已经提出了一系列广泛的方法。许多基于隧道或标记的故障恢复方法增加了路由器的数据包处理负担,消耗了额外的带宽。现有的方法既不使用隧道,也不使用标记,在存在故障链路绕道的情况下,可以保证从任何单链路故障中恢复,但这些方法会产生较长的流量绕道,这会降低网络性能,甚至增加运营成本,这是网络运营商不希望看到的。因此,在本文中,我们提出了一种名为FITD的故障推断方法来缩短交通绕路,该方法适用于OSPF/IS-IS网络。FITD不使用显式故障通知,它可以根据流量信息推断出哪个链路故障。如果存在故障链路的绕道,则FITD保证从任何单链路故障中恢复。特别是对于链路权值对称的网络,FITD保证在任何单链路故障时都能生成最短的弯路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
When privacy meets economics: Enabling differentially-private battery-supported meter reporting in smart grid Task assignment with guaranteed quality for crowdsourcing platforms Social media stickiness in Mobile Personal Livestreaming service Multicast scheduling algorithm in software defined fat-tree data center networks A cooperative mechanism for efficient inter-domain in-network cache sharing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1