Niharika Singh, I. Elamvazuthi, P. Nallagownden, N. Badruddin, Firas Ousta, A. Jangra
{"title":"Smart Microgrid QoS and Network Reliability Performance Improvement using Reinforcement Learning","authors":"Niharika Singh, I. Elamvazuthi, P. Nallagownden, N. Badruddin, Firas Ousta, A. Jangra","doi":"10.1109/ICIAS49414.2021.9642596","DOIUrl":null,"url":null,"abstract":"A Smart Microgrid consists of physical and communication layered networks. It provides communication services to each connected component and resource through multi-agent system. This paper proposes a reinforcement learning based methodology, Q-reinforcement Learning based Multi-agent based Bellmanford Routing (QRL-MABR), using multiple agents communicating over the microgrid network. It strengthens the decision-making core of the microgrid by improving Quality of service and network reliability of the smart microgrid. The performance analysis of the algorithm is tested over small-scale IEEE microgrid models i.e. IEEE 9 and IEEE 14. The work is tested and compared with four routing oriented decision-making algorithms, Open shortest path first (OSPF), Optimized link state routing (OLSR), Routing information protocol (RIP) and Multi-agent based Bellmanford routing (MABR). The results validate the productivity and learning capabilities of the proposed QRL-MABR algorithm.","PeriodicalId":212635,"journal":{"name":"2020 8th International Conference on Intelligent and Advanced Systems (ICIAS)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 8th International Conference on Intelligent and Advanced Systems (ICIAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAS49414.2021.9642596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A Smart Microgrid consists of physical and communication layered networks. It provides communication services to each connected component and resource through multi-agent system. This paper proposes a reinforcement learning based methodology, Q-reinforcement Learning based Multi-agent based Bellmanford Routing (QRL-MABR), using multiple agents communicating over the microgrid network. It strengthens the decision-making core of the microgrid by improving Quality of service and network reliability of the smart microgrid. The performance analysis of the algorithm is tested over small-scale IEEE microgrid models i.e. IEEE 9 and IEEE 14. The work is tested and compared with four routing oriented decision-making algorithms, Open shortest path first (OSPF), Optimized link state routing (OLSR), Routing information protocol (RIP) and Multi-agent based Bellmanford routing (MABR). The results validate the productivity and learning capabilities of the proposed QRL-MABR algorithm.