Noisy speech recognition using robust inversion of hidden Markov models

S. Moon, Jenq-Neng Hwang
{"title":"Noisy speech recognition using robust inversion of hidden Markov models","authors":"S. Moon, Jenq-Neng Hwang","doi":"10.1109/ICASSP.1995.479385","DOIUrl":null,"url":null,"abstract":"The hidden Markov model (HMM) inversion algorithm is proposed and applied to robust speech recognition for general types of mismatched conditions. The Baum-Welch HMM inversion algorithm is a dual procedure to the Baum-Welch HMM reestimation algorithm, which is the most widely used speech recognition technique. The forward training of an HMM, based on the Baum-Welch reestimation, finds the model parameters /spl lambda/ that optimize some criterion, usually maximum likelihood (ML), with given speech inputs s. On the other hand, the inversion of a HMM finds speech inputs s that optimize some criterion with given model parameters /spl lambda/. The performance of the proposed HMM inversion, in conjunction with HMM reestimation, for robust speech recognition under additive noise corruption and microphone mismatch conditions is favorably compared with other noisy speech recognition techniques, such as the projection-based first-order cepstrum normalization (FOCN) and the robust minimax (MINIMAX) classification techniques.","PeriodicalId":300119,"journal":{"name":"1995 International Conference on Acoustics, Speech, and Signal Processing","volume":"165 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1995 International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1995.479385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

The hidden Markov model (HMM) inversion algorithm is proposed and applied to robust speech recognition for general types of mismatched conditions. The Baum-Welch HMM inversion algorithm is a dual procedure to the Baum-Welch HMM reestimation algorithm, which is the most widely used speech recognition technique. The forward training of an HMM, based on the Baum-Welch reestimation, finds the model parameters /spl lambda/ that optimize some criterion, usually maximum likelihood (ML), with given speech inputs s. On the other hand, the inversion of a HMM finds speech inputs s that optimize some criterion with given model parameters /spl lambda/. The performance of the proposed HMM inversion, in conjunction with HMM reestimation, for robust speech recognition under additive noise corruption and microphone mismatch conditions is favorably compared with other noisy speech recognition techniques, such as the projection-based first-order cepstrum normalization (FOCN) and the robust minimax (MINIMAX) classification techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于隐马尔可夫模型鲁棒反演的噪声语音识别
提出了隐马尔可夫模型(HMM)反演算法,并将其应用于一般不匹配条件下的鲁棒语音识别。鲍姆-韦尔奇HMM反演算法是鲍姆-韦尔奇HMM重估计算法的双重过程,是目前应用最广泛的语音识别技术。HMM的前向训练,基于Baum-Welch重估计,用给定的语音输入s找到优化某些准则的模型参数/spl lambda/,通常是最大似然(ML)。另一方面,HMM的反演用给定的模型参数/spl lambda/找到优化某些准则的语音输入s。与基于投影的一阶倒谱归一化(FOCN)和鲁棒极大极小(minimax)分类技术等其他噪声语音识别技术相比,所提出的HMM反演与HMM重估计在加性噪声损坏和麦克风失配条件下的鲁棒语音识别性能优越。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Language identification with phonological and lexical models Computationally efficient wavelet packet coding of wide-band stereo audio signals Signaling techniques using solitons Blind source detection and separation using second order non-stationarity On blind channel identification for impulsive signal environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1