P. Pouponneau, L. Yahia, Y. Merhi, L. Epure, S. Martel
{"title":"Biocompatibility of Candidate Materials for the Realization of Medical Microdevices","authors":"P. Pouponneau, L. Yahia, Y. Merhi, L. Epure, S. Martel","doi":"10.1109/IEMBS.2006.260061","DOIUrl":null,"url":null,"abstract":"The propulsion of ferromagnetic micro-carriers in the blood vessels by magnetic gradients generated from a magnetic resonance imaging (MRI) system is of special interest for targeted interventions such as chemotherapy or chemo-embolization. As such, Fe-Co alloys for its highest magnetization saturation, and single crystal Ni-Mn-Ga powder and Terfenol-D for their deformation in magnetic field are evaluated for their biocompatibility. The toxicity of these materials is evaluated with MTT cell viability tests. The tests show that Fe-Co (Permendur and Vacoflux 17) alloys are toxic within 24 hours while the single crystal Ni-Mn-Ga powder becomes toxic after 48 hours. The Terfenol-D, despite its high degradation, has 90% cell viability after 72 hours. These results indicate that such candidate materials to be considered in untethered micro-carriers or devices in the blood vessels, would require, depending upon the time spent in the blood vessels, further processes to be viable for such applications","PeriodicalId":414051,"journal":{"name":"2006 International Conference of the IEEE Engineering in Medicine and Biology Society","volume":"2023 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Conference of the IEEE Engineering in Medicine and Biology Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMBS.2006.260061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
The propulsion of ferromagnetic micro-carriers in the blood vessels by magnetic gradients generated from a magnetic resonance imaging (MRI) system is of special interest for targeted interventions such as chemotherapy or chemo-embolization. As such, Fe-Co alloys for its highest magnetization saturation, and single crystal Ni-Mn-Ga powder and Terfenol-D for their deformation in magnetic field are evaluated for their biocompatibility. The toxicity of these materials is evaluated with MTT cell viability tests. The tests show that Fe-Co (Permendur and Vacoflux 17) alloys are toxic within 24 hours while the single crystal Ni-Mn-Ga powder becomes toxic after 48 hours. The Terfenol-D, despite its high degradation, has 90% cell viability after 72 hours. These results indicate that such candidate materials to be considered in untethered micro-carriers or devices in the blood vessels, would require, depending upon the time spent in the blood vessels, further processes to be viable for such applications