On optimal path planning for UAV based patrolling in complex 3D topographies

Han Wang, Bingjing Yan, Xiaoxia Li, Xuejing Luo, Qiang Yang, W. Yan
{"title":"On optimal path planning for UAV based patrolling in complex 3D topographies","authors":"Han Wang, Bingjing Yan, Xiaoxia Li, Xuejing Luo, Qiang Yang, W. Yan","doi":"10.1109/ICINFA.2016.7831962","DOIUrl":null,"url":null,"abstract":"The unmanned aerial vehicles (UAVs) have been considered an efficient platform for monitoring critical infrastructures spanning over a large geographical area. In this paper, a novel UAV optimal path planning approach based on the combination of A∗ search algorithm (AS) and ant colony optimization (ACO) algorithm for UAV patrolling is presented. The proposed path planning solution aims to identify the optimal patrolling path in a complex 3D topography given a set of patrolling positions. This study adopts the multiple normal distribution functions to produce the complex topography for the numerical simulation experiments. A set of simulations are carried out to validate and assess the performance of the proposed path planning algorithmic solution. The numerical result demonstrates that the calculated flight path can meet the requirement of UAV patrolling task with the minimized cost.","PeriodicalId":389619,"journal":{"name":"2016 IEEE International Conference on Information and Automation (ICIA)","volume":"15 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Information and Automation (ICIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICINFA.2016.7831962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

The unmanned aerial vehicles (UAVs) have been considered an efficient platform for monitoring critical infrastructures spanning over a large geographical area. In this paper, a novel UAV optimal path planning approach based on the combination of A∗ search algorithm (AS) and ant colony optimization (ACO) algorithm for UAV patrolling is presented. The proposed path planning solution aims to identify the optimal patrolling path in a complex 3D topography given a set of patrolling positions. This study adopts the multiple normal distribution functions to produce the complex topography for the numerical simulation experiments. A set of simulations are carried out to validate and assess the performance of the proposed path planning algorithmic solution. The numerical result demonstrates that the calculated flight path can meet the requirement of UAV patrolling task with the minimized cost.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
复杂三维地形下无人机巡逻最优路径规划研究
无人驾驶飞行器(uav)被认为是监测跨越大地理区域的关键基础设施的有效平台。提出了一种基于a∗搜索算法(AS)和蚁群优化算法(ACO)相结合的无人机巡逻最优路径规划方法。该路径规划方案的目标是在给定一组巡逻位置的复杂三维地形中确定最优巡逻路径。本研究采用多重正态分布函数生成复杂地形进行数值模拟实验。通过一组仿真来验证和评估所提出的路径规划算法解决方案的性能。数值结果表明,所计算的飞行路径能够以最小的代价满足无人机巡逻任务的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Morphological component decomposition combined with compressed sensing for image compression An adaptive nonlinear iterative sliding mode controller based on heuristic critic algorithm Analysis of static and dynamic real-time precise point positioning and precision based on SSR correction High-performance motion control of an XY stage for complicated contours with BFC trajectory planning An improved swarm intelligence algorithm for multirate systems state estimation using the canonical state space models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1