Periods in Solar Activity

Amy L. Potrzeba-Macrina, I. Zurbenko
{"title":"Periods in Solar Activity","authors":"Amy L. Potrzeba-Macrina, I. Zurbenko","doi":"10.22606/ADAP.2019.42001","DOIUrl":null,"url":null,"abstract":"Solar activity has a well-known periodicity of approximately 10-11 years, an oscillation that was first observed in China several thousand years ago. The purpose of this paper is to explain the driving force behind this periodicity and to explain other periodicities inherent to solar activities. In science, spectral analysis is an essential tool used for the identification of periodicities that are natural to a given dataset. In this paper the authors use spectral analysis to investigate planetary gravitational periods to explain periodicities of sunspot numbers and to make conclusions about the driving force of the sunspot numbers and solar activity. Precise analysis of inherent periodicities provides the capability to predict future fluctuations in solar activities. The authors show clear evidence of long periodicities within sunspot numbers. The combination of several periodic components, while complex, remains perfectly predictable. The authors show that the long-term component of sunspot fluctuations is perfectly proportional to the total solar irradiation near Earth measured by satellites. While satellite measurements of the total solar irradiance cover a short time interval, sunspot numbers have been recorded for a long time and essentially have more value on the prediction of solar influence on Earth’s climate. This allows for the numerical evaluation of solar energy delivered to Earth. Numerical evaluations of fluctuations in solar energies delivered to Earth are an essential achievement for any climate change analysis. The removal of solar influences from long-term temperature data provides the opportunity to numerically identify the human impact on Earth’s climate. A better understanding and prediction of the Sun’s long oscillations may influence important predictions of climatic events and impact emergency preparedness.","PeriodicalId":131060,"journal":{"name":"Advances in Astrophysics","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22606/ADAP.2019.42001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Solar activity has a well-known periodicity of approximately 10-11 years, an oscillation that was first observed in China several thousand years ago. The purpose of this paper is to explain the driving force behind this periodicity and to explain other periodicities inherent to solar activities. In science, spectral analysis is an essential tool used for the identification of periodicities that are natural to a given dataset. In this paper the authors use spectral analysis to investigate planetary gravitational periods to explain periodicities of sunspot numbers and to make conclusions about the driving force of the sunspot numbers and solar activity. Precise analysis of inherent periodicities provides the capability to predict future fluctuations in solar activities. The authors show clear evidence of long periodicities within sunspot numbers. The combination of several periodic components, while complex, remains perfectly predictable. The authors show that the long-term component of sunspot fluctuations is perfectly proportional to the total solar irradiation near Earth measured by satellites. While satellite measurements of the total solar irradiance cover a short time interval, sunspot numbers have been recorded for a long time and essentially have more value on the prediction of solar influence on Earth’s climate. This allows for the numerical evaluation of solar energy delivered to Earth. Numerical evaluations of fluctuations in solar energies delivered to Earth are an essential achievement for any climate change analysis. The removal of solar influences from long-term temperature data provides the opportunity to numerically identify the human impact on Earth’s climate. A better understanding and prediction of the Sun’s long oscillations may influence important predictions of climatic events and impact emergency preparedness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
太阳活动周期
众所周知,太阳活动的周期约为10-11年,这种振荡在几千年前的中国首次被观测到。本文的目的是解释这一周期背后的驱动力,并解释太阳活动固有的其他周期。在科学中,光谱分析是用于识别给定数据集的自然周期性的重要工具。本文用光谱分析方法研究了行星引力周期,解释了太阳黑子数的周期性,并得出了太阳黑子数和太阳活动的驱动力的结论。对固有周期性的精确分析提供了预测太阳活动未来波动的能力。作者给出了太阳黑子数量长期周期性的明确证据。几个周期成分的组合虽然复杂,但仍然是完全可以预测的。作者表明,太阳黑子波动的长期分量与卫星测量到的近地太阳总辐射完全成正比。虽然卫星对太阳总辐照度的测量覆盖的时间间隔很短,但太阳黑子的数量已经记录了很长时间,而且在预测太阳对地球气候的影响方面基本上更有价值。这允许对传送到地球的太阳能进行数值评估。对送到地球的太阳能波动进行数值评估是任何气候变化分析的重要成果。从长期温度数据中剔除太阳的影响,为从数字上确定人类对地球气候的影响提供了机会。更好地了解和预测太阳的长振荡可能会影响对气候事件的重要预测,并影响应急准备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantised Inertia and Galaxy Rotation from Information Theory Maxwell and Scalar Fields in Nonstandard Cosmology Kordylewski Dust Clouds: Could They Be Cosmic “Superbrains”? Luminosity Function of Arakelian Galaxies and Their Environmental Dependences The Computational Cosmic Brain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1