Data Assimilation in a Multi-Scale Model

Guannan Hu, C. Franzke
{"title":"Data Assimilation in a Multi-Scale Model","authors":"Guannan Hu, C. Franzke","doi":"10.1515/mcwf-2017-0006","DOIUrl":null,"url":null,"abstract":"Abstract Data assimilation for multi-scale models is an important contemporary research topic. Especially the role of unresolved scales and model error in data assimilation needs to be systematically addressed. Here we examine these issues using the Ensemble Kalman filter (EnKF) with the two-level Lorenz-96 model as a conceptual prototype model of the multi-scale climate system. We use stochastic parameterization schemes to mitigate the model errors from the unresolved scales. Our results indicate that a third-order autoregressive process performs better than a first-order autoregressive process in the stochastic parameterization schemes, especially for the system with a large time-scale separation.Model errors can also arise from imprecise model parameters. We find that the accuracy of the analysis (an optimal estimate of a model state) is linearly correlated to the forcing error in the Lorenz-96 model. Furthermore, we propose novel observation strategies to deal with the fact that the dimension of the observations is much smaller than the model states. We also propose a new analog method to increase the size of the ensemble when its size is too small.","PeriodicalId":106200,"journal":{"name":"Mathematics of Climate and Weather Forecasting","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Climate and Weather Forecasting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcwf-2017-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Abstract Data assimilation for multi-scale models is an important contemporary research topic. Especially the role of unresolved scales and model error in data assimilation needs to be systematically addressed. Here we examine these issues using the Ensemble Kalman filter (EnKF) with the two-level Lorenz-96 model as a conceptual prototype model of the multi-scale climate system. We use stochastic parameterization schemes to mitigate the model errors from the unresolved scales. Our results indicate that a third-order autoregressive process performs better than a first-order autoregressive process in the stochastic parameterization schemes, especially for the system with a large time-scale separation.Model errors can also arise from imprecise model parameters. We find that the accuracy of the analysis (an optimal estimate of a model state) is linearly correlated to the forcing error in the Lorenz-96 model. Furthermore, we propose novel observation strategies to deal with the fact that the dimension of the observations is much smaller than the model states. We also propose a new analog method to increase the size of the ensemble when its size is too small.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多尺度模式的数据同化
多尺度模型的数据同化是当代一个重要的研究课题。特别是未解决的尺度和模型误差在数据同化中的作用需要系统地解决。本文采用集合卡尔曼滤波(EnKF),以两级Lorenz-96模式作为多尺度气候系统的概念原型模式来研究这些问题。我们使用随机参数化方案来减轻未解析尺度带来的模型误差。结果表明,在随机参数化方案中,三阶自回归过程优于一阶自回归过程,特别是对于具有大时间尺度分离的系统。模型误差也可能由不精确的模型参数引起。我们发现分析的精度(模型状态的最优估计)与Lorenz-96模型中的强迫误差呈线性相关。此外,我们提出了新的观测策略来处理观测的维度远小于模型状态的事实。我们还提出了一种新的模拟方法来增加集合的大小,当它的大小过小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Expanding Grids for Efficient Cloud Dynamics Simulations Across Scales On strongly nonlinear gravity waves in a vertically sheared atmosphere Shallow-cloud impact on climate and uncertainty: A simple stochastic model Pattern formation in clouds via Turing instabilities Estimation of seasonal boundaries using temperature data: a case of northwest part of Bangladesh
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1