{"title":"Robust Fourier and Polynomial Curve Fitting","authors":"V. Guruswami, David Zuckerman","doi":"10.1109/FOCS.2016.75","DOIUrl":null,"url":null,"abstract":"We consider the robust curve fitting problem, for both algebraic and Fourier (trigonometric) polynomials, in the presence of outliers. In particular, we study the model of Arora and Khot (STOC 2002), who were motivated by applications in computer vision. In their model, the input data consists of ordered pairs (x<sub>i</sub>, y<sub>i</sub>) ε [-1, 1] × [-1, 1], i = 1, 2,..., N, and there is an unknown degree-d polynomial p such that for all but ρ fraction of the i, we have |p(x<sub>i</sub>) - y<sub>i</sub>|≤ δ. Unlike Arora-Khot, we also study the trigonometric setting, where the input is from T × [-1, 1], where T is the unit circle. In both scenarios, the i corresponding to errors are chosen randomly, and for such i the errors in the yi can be arbitrary. The goal is to output a degree-d polynomial q such that ||p - q||<sub>∞</sub> is small (for example, O(δ)). Arora and Khot could achieve a polynomial-time algorithm only for ρ = 0. Daltrophe et al. observed that a simple median-based algorithm can correct errors if the desired accuracy δ is large enough. (Larger δ makes the output guarantee easier to achieve, which seems to typically outweigh the weaker input promise.) We dramatically expand the range of parameters for which recovery of q is possible in polynomial time. Specifically, we show that there are polynomial-time algorithms in both settings that recover q up to l∞ error O(δ.99) provided 1) ρ ≤/c1log d and δ ≥ 1/(log d)c, or 2) ρ ≤ c1/log log d/log2 d and δ ≥ 1/dc. Here c is any constant and c1 is a small enough constant depending on c. The number of points that suffices is N = Õ(d) in the trigonometric setting for random x<sub>i</sub> or arbitrary x<sub>i</sub> that are roughly equally spaced, or in the algebraic setting when the x<sub>i</sub> are chosen according to the Chebyshev distribution, and N = Õ(d2) in the algebraic setting with random (or roughly equally spaced) x<sub>i</sub>.","PeriodicalId":414001,"journal":{"name":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2016.75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
We consider the robust curve fitting problem, for both algebraic and Fourier (trigonometric) polynomials, in the presence of outliers. In particular, we study the model of Arora and Khot (STOC 2002), who were motivated by applications in computer vision. In their model, the input data consists of ordered pairs (xi, yi) ε [-1, 1] × [-1, 1], i = 1, 2,..., N, and there is an unknown degree-d polynomial p such that for all but ρ fraction of the i, we have |p(xi) - yi|≤ δ. Unlike Arora-Khot, we also study the trigonometric setting, where the input is from T × [-1, 1], where T is the unit circle. In both scenarios, the i corresponding to errors are chosen randomly, and for such i the errors in the yi can be arbitrary. The goal is to output a degree-d polynomial q such that ||p - q||∞ is small (for example, O(δ)). Arora and Khot could achieve a polynomial-time algorithm only for ρ = 0. Daltrophe et al. observed that a simple median-based algorithm can correct errors if the desired accuracy δ is large enough. (Larger δ makes the output guarantee easier to achieve, which seems to typically outweigh the weaker input promise.) We dramatically expand the range of parameters for which recovery of q is possible in polynomial time. Specifically, we show that there are polynomial-time algorithms in both settings that recover q up to l∞ error O(δ.99) provided 1) ρ ≤/c1log d and δ ≥ 1/(log d)c, or 2) ρ ≤ c1/log log d/log2 d and δ ≥ 1/dc. Here c is any constant and c1 is a small enough constant depending on c. The number of points that suffices is N = Õ(d) in the trigonometric setting for random xi or arbitrary xi that are roughly equally spaced, or in the algebraic setting when the xi are chosen according to the Chebyshev distribution, and N = Õ(d2) in the algebraic setting with random (or roughly equally spaced) xi.