Fusing wavelet and short-term features for speaker identification in noisy environment

Sara Sekkate, Mohammed Khalil, A. Adib
{"title":"Fusing wavelet and short-term features for speaker identification in noisy environment","authors":"Sara Sekkate, Mohammed Khalil, A. Adib","doi":"10.1109/ISACV.2018.8354030","DOIUrl":null,"url":null,"abstract":"Effective Speaker Identification System (SIS) involves extracting features effectively. In this paper, we propose a feature extraction scheme based on wavelet analysis which is used along with short-term features. To overcome the drawbacks of Discrete Wavelet Transform (DWT), we propose to combine Stationary Wavelet Transform (SWT) with Mel-Frequency Cepstral Coefficient (MFCC) features. The combined features were used as inputs to K-nearest neighbors (Knn) classifier. The effectiveness of the proposed method is investigated for closed-set text-independent SIS in clean and noisy environments. The experimental results indicated that the proposed approach can achieve better identification rate performance with feature extraction using SWT rather than DWT.","PeriodicalId":184662,"journal":{"name":"2018 International Conference on Intelligent Systems and Computer Vision (ISCV)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Intelligent Systems and Computer Vision (ISCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISACV.2018.8354030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Effective Speaker Identification System (SIS) involves extracting features effectively. In this paper, we propose a feature extraction scheme based on wavelet analysis which is used along with short-term features. To overcome the drawbacks of Discrete Wavelet Transform (DWT), we propose to combine Stationary Wavelet Transform (SWT) with Mel-Frequency Cepstral Coefficient (MFCC) features. The combined features were used as inputs to K-nearest neighbors (Knn) classifier. The effectiveness of the proposed method is investigated for closed-set text-independent SIS in clean and noisy environments. The experimental results indicated that the proposed approach can achieve better identification rate performance with feature extraction using SWT rather than DWT.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
融合小波与短时特征的噪声环境下说话人识别
有效的说话人识别系统(SIS)涉及到特征的有效提取。本文提出了一种基于小波分析的特征提取方案,该方案与短期特征结合使用。为了克服离散小波变换(DWT)的缺点,提出将平稳小波变换(SWT)与mel -频率倒谱系数(MFCC)特征相结合。将组合的特征作为k近邻(Knn)分类器的输入。研究了该方法在清洁和噪声环境下的闭集文本无关SIS的有效性。实验结果表明,基于小波变换的特征提取比基于小波变换的特征提取具有更好的识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Policy based generic autonomic adapter for a context-aware social-collaborative system Dual-camera 3D head tracking for clinical infant monitoring Integrating web usage mining for an automatic learner profile detection: A learning styles-based approach Deep generative models: Survey Deep neural network dynamic traffic routing system for vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1