Inverse Reinforcement Learning Approach for Elicitation of Preferences in Multi-objective Sequential Optimization

A. Ikenaga, S. Arai
{"title":"Inverse Reinforcement Learning Approach for Elicitation of Preferences in Multi-objective Sequential Optimization","authors":"A. Ikenaga, S. Arai","doi":"10.1109/AGENTS.2018.8460075","DOIUrl":null,"url":null,"abstract":"It is crucial to know which criterion should be focused on, in a multi-objective decision making context, to select the best alternative from the multiple Pareto optimal solutions. However, in general, it is hard for the decision maker to express his/her own preference order for each criterion. In this study, we propose a preference elicitation method to estimate relative importance in terms of weights for each criterion by observing his/her processes of decision making. This method would make expert's preference elicited, and contribute at an important decision making point, such as urban planning,","PeriodicalId":248901,"journal":{"name":"2018 IEEE International Conference on Agents (ICA)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Agents (ICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AGENTS.2018.8460075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

It is crucial to know which criterion should be focused on, in a multi-objective decision making context, to select the best alternative from the multiple Pareto optimal solutions. However, in general, it is hard for the decision maker to express his/her own preference order for each criterion. In this study, we propose a preference elicitation method to estimate relative importance in terms of weights for each criterion by observing his/her processes of decision making. This method would make expert's preference elicited, and contribute at an important decision making point, such as urban planning,
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多目标序列优化中偏好激发的逆强化学习方法
在多目标决策环境下,从多个帕累托最优解中选择最佳方案时,知道应该关注哪个标准是至关重要的。然而,一般来说,决策者很难表达自己对每个标准的偏好顺序。在这项研究中,我们提出了一种偏好启发方法,通过观察他/她的决策过程来估计每个标准的权重相对重要性。这种方法可以引出专家的偏好,并有助于重要的决策点,如城市规划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proceedings: 2018 IEEE International Conference on Agents (ICA) Identifying safety properties guaranteed in changed environment at runtime A Cyclical Social Learning Strategy for Robust Convention Emergence Copyright Efficient Task Allocation with Communication Delay Based on Reciprocal Teams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1