Opposition-based elitist real genetic algorithm for optimal power flow

Saleh S Almasabi, Fares T. Alharbi, J. Mitra
{"title":"Opposition-based elitist real genetic algorithm for optimal power flow","authors":"Saleh S Almasabi, Fares T. Alharbi, J. Mitra","doi":"10.1109/NAPS.2016.7747958","DOIUrl":null,"url":null,"abstract":"Optimal power flow (OPF) algorithms are widely used in the operation of modern power systems, and numerous variations and enhancements have been developed over the last four decades. Yet, with decreasing time intervals and increasing complexities introduced by market policies and stochastic inputs, the need for further improvements in speed and performance of OPF algorithms persists. This paper proposes using elitist real genetic algorithm (ERGA) and opposition-based elitist real genetic algorithm (OB-ERGA) to solve the OPF problem. Also, inverse transformation and exponential transformation are implemented to investigate the convergence performance of the proposed methods. The combination of the OB-ERGA, ERGA and the fitness functions is tested on the IEEE 30-bus system to determine the effectiveness of the proposed approaches. The results are presented and compared with the existing evolutionary algorithms in the literature.","PeriodicalId":249041,"journal":{"name":"2016 North American Power Symposium (NAPS)","volume":"22 6S 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 North American Power Symposium (NAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAPS.2016.7747958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Optimal power flow (OPF) algorithms are widely used in the operation of modern power systems, and numerous variations and enhancements have been developed over the last four decades. Yet, with decreasing time intervals and increasing complexities introduced by market policies and stochastic inputs, the need for further improvements in speed and performance of OPF algorithms persists. This paper proposes using elitist real genetic algorithm (ERGA) and opposition-based elitist real genetic algorithm (OB-ERGA) to solve the OPF problem. Also, inverse transformation and exponential transformation are implemented to investigate the convergence performance of the proposed methods. The combination of the OB-ERGA, ERGA and the fitness functions is tested on the IEEE 30-bus system to determine the effectiveness of the proposed approaches. The results are presented and compared with the existing evolutionary algorithms in the literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于对立的精英实遗传算法求解最优潮流
最优潮流(OPF)算法在现代电力系统的运行中得到了广泛的应用,在过去的四十年中已经有了许多改进和改进。然而,随着时间间隔的缩短和市场政策和随机输入带来的复杂性的增加,OPF算法的速度和性能仍然需要进一步改进。本文提出了采用精英实数遗传算法(ERGA)和基于对立的精英实数遗传算法(OB-ERGA)求解OPF问题。并通过逆变换和指数变换研究了该方法的收敛性。在IEEE 30总线系统上对OB-ERGA、ERGA和适应度函数的组合进行了测试,以确定所提出方法的有效性。给出了结果,并与文献中现有的进化算法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving advanced inverter control convergence in distribution power flow A statistical analysis of the economic drivers of battery energy storage in commercial buildings Stealthy cyber attacks and impact analysis on wide-area protection of smart grid Modeling and optimal scheduling of integrated thermal and electrical energy microgrid Energy management and peak-shaving in grid-connected photovoltaic systems integrated with battery storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1