Structure-Aware Image Expansion with Global Attention

Dewen Guo, J. Feng, Bingfeng Zhou
{"title":"Structure-Aware Image Expansion with Global Attention","authors":"Dewen Guo, J. Feng, Bingfeng Zhou","doi":"10.1145/3355088.3365161","DOIUrl":null,"url":null,"abstract":"We present a novel structure-aware strategy for image expansion which aims to complete an image from a small patch. Different from image inpainting, the majority of the pixels are absent here. Hence, there are higher requirements for global structure-aware prediction to produce visually plausible results. Thus, treating the expansion tasks as inpainting from the outside is ill-posed. Therefore, we propose a learning-based method combining structure-aware and visual attention strategies to make better prediction. Our architecture consists of two stages. Since visual attention cannot be taken full advantage of when the global structure is absent, we first use the ImageNet-pre-trained VGG-19 to make the structure-aware prediction on the pre-training stage. Then, we implement a non-local attention layer on the coarsely-completed results on the refining stage. Our network can well predict the global structures and semantic details from small input image patches, and generate full images with structural consistency. We apply our method on a human face dataset, which containing rich semantic and structural details. The results show its stability and effectiveness.","PeriodicalId":435930,"journal":{"name":"SIGGRAPH Asia 2019 Technical Briefs","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH Asia 2019 Technical Briefs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3355088.3365161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present a novel structure-aware strategy for image expansion which aims to complete an image from a small patch. Different from image inpainting, the majority of the pixels are absent here. Hence, there are higher requirements for global structure-aware prediction to produce visually plausible results. Thus, treating the expansion tasks as inpainting from the outside is ill-posed. Therefore, we propose a learning-based method combining structure-aware and visual attention strategies to make better prediction. Our architecture consists of two stages. Since visual attention cannot be taken full advantage of when the global structure is absent, we first use the ImageNet-pre-trained VGG-19 to make the structure-aware prediction on the pre-training stage. Then, we implement a non-local attention layer on the coarsely-completed results on the refining stage. Our network can well predict the global structures and semantic details from small input image patches, and generate full images with structural consistency. We apply our method on a human face dataset, which containing rich semantic and structural details. The results show its stability and effectiveness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结构感知图像扩展与全球关注
我们提出了一种新的结构感知图像扩展策略,旨在从一个小块完成图像。与图像上漆不同的是,大多数像素在这里是缺席的。因此,对全局结构感知预测提出了更高的要求,以产生视觉上可信的结果。因此,将扩展任务视为从外部进行粉刷是不恰当的。因此,我们提出了一种结合结构感知和视觉注意策略的基于学习的方法来进行更好的预测。我们的架构由两个阶段组成。由于全局结构缺失时,视觉注意力无法被充分利用,我们首先使用imagenet预训练的VGG-19在预训练阶段进行结构感知预测。然后,在精炼阶段,我们在粗完成的结果上实现非局部关注层。我们的网络可以很好地预测小块输入图像的整体结构和语义细节,并生成结构一致的完整图像。我们将该方法应用于包含丰富语义和结构细节的人脸数据集。实验结果表明了该方法的稳定性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Faster RPNN: Rendering Clouds with Latent Space Light Probes Flexible Ray Traversal with an Extended Programming Model Augmented Reality Guided Respiratory Liver Tumors Punctures: A Preliminary Feasibility Study Beyond the Screen Embedded Concave Micromirror Array-based See-through Light Field Near-eye Display
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1