New Insights into the Rare Earth Element Mineralization of the Storkwitz Carbonatite, Germany

Christina Loidolt, R. Zimmermann, Laura Tusa, S. Lorenz, D. Ebert, R. Gloaguen, S. Broom-Fendley
{"title":"New Insights into the Rare Earth Element Mineralization of the Storkwitz Carbonatite, Germany","authors":"Christina Loidolt, R. Zimmermann, Laura Tusa, S. Lorenz, D. Ebert, R. Gloaguen, S. Broom-Fendley","doi":"10.3749/canmin.2100061","DOIUrl":null,"url":null,"abstract":"The Storkwitz carbonatite breccia, located near Delitzsch, Germany, is one of the few European domestic rare earth elements (REE) deposits, but is relatively understudied owing to more than 100 m of Cenozoic sedimentary cover. We present the results of a petrological investigation of the recently acquired ∼700 m-deep SES 1/2012 borehole. The Storkwitz breccia is composed of clasts of country rock and carbonatite ranging from <1 mm to ∼30 cm in size, cemented by ankeritic carbonatite. Extensive fenitization and biotitization mainly affects clasts of coarse-grained granitoids and medium-grained dolomite-calcite-carbonatites. An intersection of Storkwitz breccia at 425 m to 542 m contains local REE enrichment up to ∼1.7 wt.%. total rare earth oxides, which is predominantly contained in a REE-fluorcarbonate bearing mineral assemblage. The assemblage locally forms irregularly shaped vug-like features and rare hexagonal pseudomorphs in clasts of fine-grained ankerite-carbonatite. The REE-fluorcarbonate mineral assemblage formed prior to brecciation in the ankerite-carbonatite, which paragenetically fits with recent experimental and fluid inclusion data demonstrating the importance of late magmatic processes in forming carbonatite-hosted REE mineralization, possibly from an evolved ‘brine-melt' phase. Our findings indicate that minor REE recrystallization and redistribution occurred during late-stage hydrothermal or supergene processes, without leading to significant REE enrichment in the upper part of the breccia compared to the lower part. Cross-cutting faults represent the last deformation event and post-date carbonatite intrusion and fenitization. They may represent important conduits for late-stage hydrothermal or supergene fluids responsible for recrystallization of the breccia matrix to a cryptocrystalline oxide mineral assemblage. Our findings highlight the importance of REE enrichment in late-stage ‘brine-melt' phases through magmatic fractionation and in situ hydrothermal replacement.","PeriodicalId":134244,"journal":{"name":"The Canadian Mineralogist","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Canadian Mineralogist","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3749/canmin.2100061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Storkwitz carbonatite breccia, located near Delitzsch, Germany, is one of the few European domestic rare earth elements (REE) deposits, but is relatively understudied owing to more than 100 m of Cenozoic sedimentary cover. We present the results of a petrological investigation of the recently acquired ∼700 m-deep SES 1/2012 borehole. The Storkwitz breccia is composed of clasts of country rock and carbonatite ranging from <1 mm to ∼30 cm in size, cemented by ankeritic carbonatite. Extensive fenitization and biotitization mainly affects clasts of coarse-grained granitoids and medium-grained dolomite-calcite-carbonatites. An intersection of Storkwitz breccia at 425 m to 542 m contains local REE enrichment up to ∼1.7 wt.%. total rare earth oxides, which is predominantly contained in a REE-fluorcarbonate bearing mineral assemblage. The assemblage locally forms irregularly shaped vug-like features and rare hexagonal pseudomorphs in clasts of fine-grained ankerite-carbonatite. The REE-fluorcarbonate mineral assemblage formed prior to brecciation in the ankerite-carbonatite, which paragenetically fits with recent experimental and fluid inclusion data demonstrating the importance of late magmatic processes in forming carbonatite-hosted REE mineralization, possibly from an evolved ‘brine-melt' phase. Our findings indicate that minor REE recrystallization and redistribution occurred during late-stage hydrothermal or supergene processes, without leading to significant REE enrichment in the upper part of the breccia compared to the lower part. Cross-cutting faults represent the last deformation event and post-date carbonatite intrusion and fenitization. They may represent important conduits for late-stage hydrothermal or supergene fluids responsible for recrystallization of the breccia matrix to a cryptocrystalline oxide mineral assemblage. Our findings highlight the importance of REE enrichment in late-stage ‘brine-melt' phases through magmatic fractionation and in situ hydrothermal replacement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
德国Storkwitz碳酸盐岩稀土元素成矿作用新认识
位于德国Delitzsch附近的Storkwitz碳酸盐岩角砾岩是欧洲国内为数不多的稀土矿床之一,但由于其超过100 m的新生代沉积盖层,对其研究相对较少。我们介绍了最近获得的~ 700米深SES 1/2012井的岩石学调查结果。Storkwitz角砾岩由乡村岩石和碳酸盐岩的碎屑组成,大小从<1毫米到~ 30厘米不等,由角岩碳酸盐岩胶结。广泛的磷化作用和生物石化作用主要影响粗粒花岗岩和中粒白云石-方解石-碳酸盐的碎屑。在425米至542米的Storkwitz角砾岩交叉处,局部稀土富集高达约1.7 wt.%。总稀土氧化物,主要包含在含稀土-氟碳酸盐矿物组合中。在细粒铁白云岩-碳酸盐岩碎屑中局部形成不规则的孔洞状特征和罕见的六角形伪晶。稀土-氟碳酸盐矿物组合在角砾岩-碳酸岩中形成于角砾岩之前,这与最近的实验和流体包裹体数据共生,表明晚期岩浆作用在形成碳酸岩为主的稀土矿化中的重要性,可能来自演化的“卤水熔融”阶段。研究结果表明,角砾岩在后期热液或表生过程中发生了少量的稀土重结晶和重分配,但未导致角砾岩上部相对于下部明显富集稀土。横切断层代表了最后一次变形事件和晚期碳酸盐岩侵入和成矿作用。它们可能是后期热液或表生流体的重要通道,导致角砾岩基质重结晶为隐晶氧化物矿物组合。我们的发现强调了通过岩浆分馏和原位热液替代在晚期“盐水-熔体”阶段富集稀土元素的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Thematic Issue on Critical Minerals: The Canadian Mineralogist Keeping up with the Hot Topics Processes of Enrichment of Trace Metals for High-Tech Applications in Hydrothermal Veins of the Ruhr Basin and the Rhenish Massif, Germany Affinity and Petrogenesis of the Huzyk Creek Metal-Enriched Graphite Deposit: A Metamorphosed Metalliferous Black Shale in the Trans-Hudson Orogen Of Manitoba, Canada Fractionation and Enrichment Patterns in White Mica from Li Pegmatites of the Wekusko Lake Pegmatite Field, Manitoba, Canada Supergene Turquoise and Associated Phosphate Minerals of the Porphyry-Lode System at Butte, Montana, USA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1