{"title":"A Delay Compensation Approach for IoT-Enabled Networks with Different Control Strategies","authors":"Padmaja Mishra, Rajesh Kumar Patjoshi, A. Yadav","doi":"10.1109/ICECCT56650.2023.10179610","DOIUrl":null,"url":null,"abstract":"The Internet of things (IoT) becomes a new era for the imminent industry to provide an intelligent environment to control systems in real-time. Considerably, for accomplishing the delay analysis in the IoT system, it is necessary to consider the appropriate control system for the precise identification of IoT terminals and the efficient regulation of their access to the network. Therefore, the study considers about different control strategies such as PID (proportional integral derivative) $2^{\\text{nd}}$ process of Ziegler's Nichols, and PID Pole placement technique for finding the critical delay values under an IoT network environment. The control system is designed by considering different network constraints. Based on the network constraints and the controllers, a significant model is designed for calculating the maximum delay concerning sensor and controller along with controller and things. The controllers are premeditated using the transfer function of the particular plant i.e thing. The planned method designed here is to come across the value of delay via different design techniques using a PID controller. Finally, simulation results confirm the effectiveness of the proposed controller under MATLAB/Simulink environment.","PeriodicalId":180790,"journal":{"name":"2023 Fifth International Conference on Electrical, Computer and Communication Technologies (ICECCT)","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Fifth International Conference on Electrical, Computer and Communication Technologies (ICECCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECCT56650.2023.10179610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The Internet of things (IoT) becomes a new era for the imminent industry to provide an intelligent environment to control systems in real-time. Considerably, for accomplishing the delay analysis in the IoT system, it is necessary to consider the appropriate control system for the precise identification of IoT terminals and the efficient regulation of their access to the network. Therefore, the study considers about different control strategies such as PID (proportional integral derivative) $2^{\text{nd}}$ process of Ziegler's Nichols, and PID Pole placement technique for finding the critical delay values under an IoT network environment. The control system is designed by considering different network constraints. Based on the network constraints and the controllers, a significant model is designed for calculating the maximum delay concerning sensor and controller along with controller and things. The controllers are premeditated using the transfer function of the particular plant i.e thing. The planned method designed here is to come across the value of delay via different design techniques using a PID controller. Finally, simulation results confirm the effectiveness of the proposed controller under MATLAB/Simulink environment.