A Novel Discriminant Locality Preserving Projections for MDM-based Speaker Classification

Yi Yang, C. Bao
{"title":"A Novel Discriminant Locality Preserving Projections for MDM-based Speaker Classification","authors":"Yi Yang, C. Bao","doi":"10.1109/GCIS.2012.55","DOIUrl":null,"url":null,"abstract":"Speaker classification is an important component for audio indexing technology for many applications such as multimedia conferencing. The primary input device of NIST speaker classification evaluation is Multiple Distant Microphones (MDM). MDM is composed of multiple microphones and has the merit of low price and easy-to-use. The spatial time-delay vector of MDM can be extracted as the speaker's discriminant feature. However the feature dimension will be expanded quickly with the increasing number of sensors. Locality Preserving Projections (LPP) and Discriminant locality preserving projection (DLPP) are the principal manifold dimension-reduction algorithms being proposed recently. In this paper, we proposed a novel method to overcome the drawbacks of traditional manifold algorithms such as the lack of class information or spatial identification information. Some basic concepts of spatial time-delay feature and merging feature for MDM speaker classification are first introduced. A review of known DLPP algorithm followed by Fisher criterion is given. Then the Multi-component Discriminant Locality Preserving Projections (MDLPP) method for speaker classification with MDM is described. Comparative experiment results on real meeting data showed the effectiveness of the proposed method.","PeriodicalId":337629,"journal":{"name":"2012 Third Global Congress on Intelligent Systems","volume":"221 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Third Global Congress on Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCIS.2012.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Speaker classification is an important component for audio indexing technology for many applications such as multimedia conferencing. The primary input device of NIST speaker classification evaluation is Multiple Distant Microphones (MDM). MDM is composed of multiple microphones and has the merit of low price and easy-to-use. The spatial time-delay vector of MDM can be extracted as the speaker's discriminant feature. However the feature dimension will be expanded quickly with the increasing number of sensors. Locality Preserving Projections (LPP) and Discriminant locality preserving projection (DLPP) are the principal manifold dimension-reduction algorithms being proposed recently. In this paper, we proposed a novel method to overcome the drawbacks of traditional manifold algorithms such as the lack of class information or spatial identification information. Some basic concepts of spatial time-delay feature and merging feature for MDM speaker classification are first introduced. A review of known DLPP algorithm followed by Fisher criterion is given. Then the Multi-component Discriminant Locality Preserving Projections (MDLPP) method for speaker classification with MDM is described. Comparative experiment results on real meeting data showed the effectiveness of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于mdm的说话人分类的一种新的判别局部保持投影
在多媒体会议等应用中,说话人分类是音频索引技术的重要组成部分。NIST说话人分类评价的主要输入设备是多远传声器(MDM)。MDM由多个麦克风组成,具有价格低廉、使用方便等优点。提取MDM的空间时延向量作为说话人的判别特征。然而,随着传感器数量的增加,特征维度将迅速扩展。局部保持投影(Locality Preserving projection, LPP)和判别局部保持投影(Discriminant Locality Preserving projection, DLPP)是近年来提出的两种主要的维数降维算法。本文提出了一种新的方法来克服传统流形算法缺乏类别信息或空间识别信息的缺点。首先介绍了空间时延特征和融合特征在MDM说话人分类中的一些基本概念。对已有的基于Fisher准则的DLPP算法进行了综述。然后描述了基于MDM的说话人分类的多分量判别局部保持投影(MDLPP)方法。在实际会议数据上的对比实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Temperature Prediction Based on Different Meteorological Series The Design and Application for a Bio-inspired Nonlinear Intelligent Controller Problem-Specific Knowledge Based Heuristic Algorithm to Solve Satellite Broadcast Scheduling Problem Micro Pitch and Vary Speed for Extreme Value Search MPPT Method of DFIG Academic Relation Classification Rules Extraction with Correlation Feature Weight Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1