Magnitude replacement of real and imaginary modulation spectrum of acoustic spectrograms for noise-robust speech recognition

Hsin-Ju Hsieh, J. Hung
{"title":"Magnitude replacement of real and imaginary modulation spectrum of acoustic spectrograms for noise-robust speech recognition","authors":"Hsin-Ju Hsieh, J. Hung","doi":"10.1109/ICCE-TW.2015.7216925","DOIUrl":null,"url":null,"abstract":"In this paper, a novel method is proposed to enhance the complex-valued acoustic spectrograms of speech signals via replacing the magnitude part of the corresponding modulation spectrum in order to create noise-robust feature representation for recognition. All the evaluation experiments implemented on the Aurora-2 digit database and task show that the presented method performs better than the baseline MFCC and several well-known noise-robust techniques. These results apparently reveal that this novel method alleviates the effect of noise in speech features significantly.","PeriodicalId":340402,"journal":{"name":"2015 IEEE International Conference on Consumer Electronics - Taiwan","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Consumer Electronics - Taiwan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-TW.2015.7216925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, a novel method is proposed to enhance the complex-valued acoustic spectrograms of speech signals via replacing the magnitude part of the corresponding modulation spectrum in order to create noise-robust feature representation for recognition. All the evaluation experiments implemented on the Aurora-2 digit database and task show that the presented method performs better than the baseline MFCC and several well-known noise-robust techniques. These results apparently reveal that this novel method alleviates the effect of noise in speech features significantly.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
噪声鲁棒语音识别声学谱图实调制谱和虚调制谱的幅度替换
本文提出了一种新的方法,通过替换相应调制谱的幅度部分来增强语音信号的复值声学谱图,从而产生噪声鲁棒的特征表示。在Aurora-2数字数据库和任务上进行的所有评估实验表明,该方法的性能优于基线MFCC和几种知名的抗噪技术。结果表明,该方法明显减轻了语音特征中噪声的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A fuzzy-rough set based ontology for hybrid recommendation Monitoring system of patient position based on wireless body area sensor network Automation control algorithms in gas mixture for preterm infant oxygen therapy Interframe hole filling for DIBR in 3D videos Automatic recognition of audio event using dynamic local binary patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1