Mapping Method between 2D Landscape Image and 3D Spatial Data based on Adversarial Relative Depth Constraint Network

Shuhao Wang, Zhuoru Lin, Zhimo Weng, Anna Li
{"title":"Mapping Method between 2D Landscape Image and 3D Spatial Data based on Adversarial Relative Depth Constraint Network","authors":"Shuhao Wang, Zhuoru Lin, Zhimo Weng, Anna Li","doi":"10.1109/QRS-C57518.2022.00101","DOIUrl":null,"url":null,"abstract":"This paper proposes a mapping method of 2D image and 3D spatial data based on the adversarial relative depth constraint network. The steps are as follows: 1) Input pixel coordinates of key nodes of 2D landscape image, and conduct normalization preprocessing; 2) Input two-dimensional pixel coordinates into the depth prediction network and output the depth values of key nodes; 3) Using depth values and two-dimensional pixel coordinates to reconstruct three-dimensional coordinates of key nodes; 4) Input DEM data to the discriminator of the generated adversarial network to calculate the authenticity error value, and use the relative depth information between the attitude characteristics of mountain and hydrology and the corresponding key nodes of the image to calculate the relative depth error; 5) Add the authenticity error and relative depth error calculated above to get the total error, and feed back to the depth prediction network to get a more accurate mapping evaluation, so as to realize mapping discovery. The problems solved in this paper include: lack of characteristic pose data in the traditional geo-evidence-based process of 2D landscape images; The results of the generative adversarial network method do not conform to the relative depth relationship of feature points in 3D spatial data.","PeriodicalId":183728,"journal":{"name":"2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QRS-C57518.2022.00101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a mapping method of 2D image and 3D spatial data based on the adversarial relative depth constraint network. The steps are as follows: 1) Input pixel coordinates of key nodes of 2D landscape image, and conduct normalization preprocessing; 2) Input two-dimensional pixel coordinates into the depth prediction network and output the depth values of key nodes; 3) Using depth values and two-dimensional pixel coordinates to reconstruct three-dimensional coordinates of key nodes; 4) Input DEM data to the discriminator of the generated adversarial network to calculate the authenticity error value, and use the relative depth information between the attitude characteristics of mountain and hydrology and the corresponding key nodes of the image to calculate the relative depth error; 5) Add the authenticity error and relative depth error calculated above to get the total error, and feed back to the depth prediction network to get a more accurate mapping evaluation, so as to realize mapping discovery. The problems solved in this paper include: lack of characteristic pose data in the traditional geo-evidence-based process of 2D landscape images; The results of the generative adversarial network method do not conform to the relative depth relationship of feature points in 3D spatial data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于对抗相对深度约束网络的二维景观图像与三维空间数据映射方法
提出了一种基于对抗相对深度约束网络的二维图像与三维空间数据的映射方法。步骤如下:1)输入二维景观图像关键节点像素坐标,进行归一化预处理;2)将二维像素坐标输入深度预测网络,输出关键节点的深度值;3)利用深度值和二维像素坐标重构关键节点的三维坐标;4)将DEM数据输入到生成的对抗网络的鉴别器中计算真实性误差值,并利用山体和水文姿态特征与图像对应关键节点之间的相对深度信息计算相对深度误差;5)将上述计算的真实性误差和相对深度误差相加,得到总误差,并反馈给深度预测网络,得到更准确的测绘评价,从而实现测绘发现。本文解决的问题包括:传统的二维景观图像地理循证处理中缺少特征位姿数据;生成对抗网络方法的结果不符合三维空间数据中特征点的相对深度关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Software Bug Prediction based on Complex Network Considering Control Flow A Fault Localization Method Based on Similarity Weighting with Unlabeled Test Cases What Should Abeeha do? an Activity for Phishing Awareness The Real-Time General Display and Control Platform Designing Method based on Software Product Line Code Search Method Based on Multimodal Representation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1