A global robust stability criterion for jumping stochastic Cohen- Grossberg neural networks with mode-dependent mixed delays

Hongjun Chu, Lixin Gao
{"title":"A global robust stability criterion for jumping stochastic Cohen- Grossberg neural networks with mode-dependent mixed delays","authors":"Hongjun Chu, Lixin Gao","doi":"10.1109/CCDC.2009.5192457","DOIUrl":null,"url":null,"abstract":"The global robust stability problem is considered for a class of uncertain stochastic Cohen-Grossberg neural networks with Markovian jumping parameters and time-delay in this paper. The time delays are mode-dependent mixed delays including discrete delays and distributed delays. The jumping parameters considered here are generated from a continuous-time discrete-state homogenous Markov chain, which are governed by a Markov process with discrete and finite state space. Based on the Lyapunov method and stochastic analysis approaches, a stability criterion is established, which can be expressed in terms of linear matrix inequalities (LMIs). Finally, a numerical example is given to demonstrate the effectiveness of the proposed results.","PeriodicalId":127110,"journal":{"name":"2009 Chinese Control and Decision Conference","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Chinese Control and Decision Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2009.5192457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The global robust stability problem is considered for a class of uncertain stochastic Cohen-Grossberg neural networks with Markovian jumping parameters and time-delay in this paper. The time delays are mode-dependent mixed delays including discrete delays and distributed delays. The jumping parameters considered here are generated from a continuous-time discrete-state homogenous Markov chain, which are governed by a Markov process with discrete and finite state space. Based on the Lyapunov method and stochastic analysis approaches, a stability criterion is established, which can be expressed in terms of linear matrix inequalities (LMIs). Finally, a numerical example is given to demonstrate the effectiveness of the proposed results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有模相关混合时滞的跳变随机Cohen- Grossberg神经网络的全局鲁棒稳定性判据
研究了一类具有马尔可夫跳变参数和时滞的不确定随机Cohen-Grossberg神经网络的全局鲁棒稳定性问题。时间延迟是模式相关的混合延迟,包括离散延迟和分布式延迟。本文所考虑的跳跃参数是由一个连续时间离散状态齐次马尔可夫链产生的,该链由一个具有离散和有限状态空间的马尔可夫过程控制。基于Lyapunov方法和随机分析方法,建立了一个稳定性判据,该判据可以用线性矩阵不等式(lmi)表示。最后,通过数值算例验证了所提结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Observer-based H∞ control for discrete-time T-S fuzzy systems Soft sensor for distillation column feeds Design of temperature measure system for variable sensitive temperature range Wavelet neural network based fault diagnosis of asynchronous motor Analysis of the divert ability of atmospheric interceptors controlled by lateral jet thrusters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1