Machine learning approach to predicting the acceptance of academic papers

M. Skorikov, S. Momen
{"title":"Machine learning approach to predicting the acceptance of academic papers","authors":"M. Skorikov, S. Momen","doi":"10.1109/IAICT50021.2020.9172011","DOIUrl":null,"url":null,"abstract":"In this paper, machine learning approaches have been used to predict whether a scientific paper will be accepted in a top-tier AI conferences or not. This shall help authors identify the likelihood of their paper getting accepted in a top-tier AI conference. We have used the PeerRead dataset containing papers collected from major AI conferences that are publicly available. We have achieved an accuracy of 81% using Random Forest classifier. The novelty of the paper lies in accurately predicting whether a scientific paper will be accepted in the top AI conference.","PeriodicalId":433718,"journal":{"name":"2020 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAICT50021.2020.9172011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, machine learning approaches have been used to predict whether a scientific paper will be accepted in a top-tier AI conferences or not. This shall help authors identify the likelihood of their paper getting accepted in a top-tier AI conference. We have used the PeerRead dataset containing papers collected from major AI conferences that are publicly available. We have achieved an accuracy of 81% using Random Forest classifier. The novelty of the paper lies in accurately predicting whether a scientific paper will be accepted in the top AI conference.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测学术论文接受度的机器学习方法
在这篇论文中,机器学习方法被用来预测一篇科学论文是否会被顶级人工智能会议接受。这将有助于作者确定他们的论文被顶级人工智能会议接受的可能性。我们使用了PeerRead数据集,其中包含从主要人工智能会议收集的论文,这些论文都是公开的。我们使用随机森林分类器实现了81%的准确率。这篇论文的新颖之处在于,它准确地预测了一篇科学论文是否会被人工智能顶级会议接受。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Human Target Search and Detection using Autonomous UAV and Deep learning Refarming Performance Analysis of Mobile Broadband System in Indonesia Human Activity Recognition System using Smart Phone based Accelerometer and Machine Learning Analyzing Different Unstated Goal Constraints on Reinforcement Learning Algorithm for Reacher Task in the Robotic Scrub Nurse Application Gain Performance Analysis of A Parabolic Reflector Fed with A Rectangular Microstrip Array Antenna
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1