StreamSwitch: Fulfilling Latency Service-Layer Agreement for Stateful Streaming

Zhaochen She, Yancan Mao, Hailin Xiang, Xin Wang, Richard T. B. Ma
{"title":"StreamSwitch: Fulfilling Latency Service-Layer Agreement for Stateful Streaming","authors":"Zhaochen She, Yancan Mao, Hailin Xiang, Xin Wang, Richard T. B. Ma","doi":"10.1109/INFOCOM53939.2023.10228903","DOIUrl":null,"url":null,"abstract":"Distributed stream systems provide low latency by processing data as it arrives. However, existing systems do not provide latency guarantee, a critical requirement of real-time analytics, especially for stateful operators under burst and skewed workload. We present StreamSwitch, a control plane for stream systems to bound operator latency while optimizing resource usage. Based on a novel stream switch abstraction that unifies dynamic scaling and load balancing into a holistic control framework, our design incorporates reactive and predictive metrics to deduce the healthiness of executors and prescribes practically optimal scaling and load balancing decisions in time. We implement a prototype of StreamSwitch and integrate it with Apache Flink and Samza. Experimental evaluations on real-world applications and benchmarks show that StreamSwitch provides cost-effective solutions for bounding latency and outperforms the state-of-the-art alternative solutions.","PeriodicalId":387707,"journal":{"name":"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOM53939.2023.10228903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Distributed stream systems provide low latency by processing data as it arrives. However, existing systems do not provide latency guarantee, a critical requirement of real-time analytics, especially for stateful operators under burst and skewed workload. We present StreamSwitch, a control plane for stream systems to bound operator latency while optimizing resource usage. Based on a novel stream switch abstraction that unifies dynamic scaling and load balancing into a holistic control framework, our design incorporates reactive and predictive metrics to deduce the healthiness of executors and prescribes practically optimal scaling and load balancing decisions in time. We implement a prototype of StreamSwitch and integrate it with Apache Flink and Samza. Experimental evaluations on real-world applications and benchmarks show that StreamSwitch provides cost-effective solutions for bounding latency and outperforms the state-of-the-art alternative solutions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
StreamSwitch:实现有状态流的延迟服务层协议
分布式流系统通过在数据到达时处理数据来提供低延迟。然而,现有系统不能提供延迟保证,这是实时分析的关键要求,特别是对于突发和倾斜工作负载下的有状态运营商。我们提出了StreamSwitch,一个流系统的控制平面,在优化资源使用的同时绑定操作延迟。基于一种新颖的流开关抽象,将动态扩展和负载平衡统一到一个整体控制框架中,我们的设计结合了反应性和预测性指标,以推断执行者的健康状况,并及时规定实际的最佳扩展和负载平衡决策。我们实现了StreamSwitch的原型,并将其与Apache Flink和Samza集成。实际应用和基准测试的实验评估表明,StreamSwitch为边界延迟提供了经济有效的解决方案,并且优于最先进的替代解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
i-NVMe: Isolated NVMe over TCP for a Containerized Environment One Shot for All: Quick and Accurate Data Aggregation for LPWANs Joint Participation Incentive and Network Pricing Design for Federated Learning Buffer Awareness Neural Adaptive Video Streaming for Avoiding Extra Buffer Consumption Melody: Toward Resource-Efficient Packet Header Vector Encoding on Programmable Switches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1