Investigation of Frozen Rock Failure using Thermal Infrared Image

Jihwan Park, Hyeong-Dong Park
{"title":"Investigation of Frozen Rock Failure using Thermal Infrared Image","authors":"Jihwan Park, Hyeong-Dong Park","doi":"10.7474/TUS.2015.25.2.144","DOIUrl":null,"url":null,"abstract":"Mechanical energy is accumulated in the object when stress is exerted on rock specimens, and the failure is occurred when the stress is larger than critical stress. The accumulated energy is emitted as various forms including physical deformation, light, heat and sound. Uniaxial compression strength test and point load strength test were carried out in low temperature environment, and thermal variation of rock specimens were observed and analyzed quantitatively using thermal infrared camera images. Temperature of failure plane was increased just before the failure because of concentration of stress, and was rapidly increased at the moment of the failure because of the emission of thermal energy. The variations of temperature were larger in diorite and basalt specimens which were strong and fresh than in tuff specimens which were weak and weathered. This study can be applied to prevent disasters in rock slope, tunnel and mine in cold regions and to analyze satellite image for predicting earthquake in cold regions.","PeriodicalId":437780,"journal":{"name":"Journal of Korean Society for Rock Mechanics","volume":"266 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Korean Society for Rock Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7474/TUS.2015.25.2.144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Mechanical energy is accumulated in the object when stress is exerted on rock specimens, and the failure is occurred when the stress is larger than critical stress. The accumulated energy is emitted as various forms including physical deformation, light, heat and sound. Uniaxial compression strength test and point load strength test were carried out in low temperature environment, and thermal variation of rock specimens were observed and analyzed quantitatively using thermal infrared camera images. Temperature of failure plane was increased just before the failure because of concentration of stress, and was rapidly increased at the moment of the failure because of the emission of thermal energy. The variations of temperature were larger in diorite and basalt specimens which were strong and fresh than in tuff specimens which were weak and weathered. This study can be applied to prevent disasters in rock slope, tunnel and mine in cold regions and to analyze satellite image for predicting earthquake in cold regions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用热红外图像研究冻土破坏
当岩石试样受到应力作用时,会在物体中积累机械能,当应力大于临界应力时发生破坏。积累的能量以物理变形、光、热、声等多种形式发出。在低温环境下进行了单轴抗压强度试验和点载荷强度试验,利用红外热像仪图像对岩石试样的热变化进行了定量观察和分析。破坏面温度在破坏前由于应力集中而升高,在破坏瞬间由于热能的发射而迅速升高。闪长岩和玄武岩标本的温度变化较大,其中闪长岩和玄武岩标本的温度变化较弱,凝灰岩标本的温度变化较小。该研究可应用于寒区岩质边坡、隧道、矿山灾害的防治,也可用于寒区地震的卫星影像分析预报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of a Low Pressure Auxiliary Fan for Local Large-opening Limestone Mines Performance Evaluation of Conical Picks for Roadheader in Copper Mines Development of an Optimized Prediction System of Round Trip Occurrence using Genetic Algorithm Study on the Convergence of the NATM Tunnel Constructed in the Weathered Granite THM Coupling Analysis for Decovalex-2015 Task B2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1