A Transformer-Based Network for Dynamic Hand Gesture Recognition

Andrea D'Eusanio, A. Simoni, S. Pini, G. Borghi, R. Vezzani, R. Cucchiara
{"title":"A Transformer-Based Network for Dynamic Hand Gesture Recognition","authors":"Andrea D'Eusanio, A. Simoni, S. Pini, G. Borghi, R. Vezzani, R. Cucchiara","doi":"10.1109/3DV50981.2020.00072","DOIUrl":null,"url":null,"abstract":"Transformer-based neural networks represent a successful self-attention mechanism that achieves state-of-the-art results in language understanding and sequence modeling. However, their application to visual data and, in particular, to the dynamic hand gesture recognition task has not yet been deeply investigated. In this paper, we propose a transformer-based architecture for the dynamic hand gesture recognition task. We show that the employment of a single active depth sensor, specifically the usage of depth maps and the surface normals estimated from them, achieves state-of-the-art results, overcoming all the methods available in the literature on two automotive datasets, namely NVidia Dynamic Hand Gesture and Briareo. Moreover, we test the method with other data types available with common RGB-D devices, such as infrared and color data. We also assess the performance in terms of inference time and number of parameters, showing that the proposed framework is suitable for an online in-car infotainment system.","PeriodicalId":293399,"journal":{"name":"2020 International Conference on 3D Vision (3DV)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on 3D Vision (3DV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DV50981.2020.00072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Transformer-based neural networks represent a successful self-attention mechanism that achieves state-of-the-art results in language understanding and sequence modeling. However, their application to visual data and, in particular, to the dynamic hand gesture recognition task has not yet been deeply investigated. In this paper, we propose a transformer-based architecture for the dynamic hand gesture recognition task. We show that the employment of a single active depth sensor, specifically the usage of depth maps and the surface normals estimated from them, achieves state-of-the-art results, overcoming all the methods available in the literature on two automotive datasets, namely NVidia Dynamic Hand Gesture and Briareo. Moreover, we test the method with other data types available with common RGB-D devices, such as infrared and color data. We also assess the performance in terms of inference time and number of parameters, showing that the proposed framework is suitable for an online in-car infotainment system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于变压器的动态手势识别网络
基于变压器的神经网络代表了一种成功的自注意机制,它在语言理解和序列建模方面取得了最先进的结果。然而,它们在视觉数据中的应用,特别是在动态手势识别任务中的应用尚未得到深入研究。在本文中,我们提出了一种基于变压器的动态手势识别架构。我们表明,使用单个主动深度传感器,特别是使用深度图和从深度图中估计的表面法线,实现了最先进的结果,克服了文献中在两个汽车数据集(即NVidia Dynamic Hand Gesture和Briareo)上可用的所有方法。此外,我们用常见RGB-D设备提供的其他数据类型(如红外和彩色数据)测试了该方法。我们还从推理时间和参数数量方面评估了性能,表明所提出的框架适用于在线车载信息娱乐系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Screen-space Regularization on Differentiable Rasterization Motion Annotation Programs: A Scalable Approach to Annotating Kinematic Articulations in Large 3D Shape Collections Two-Stage Relation Constraint for Semantic Segmentation of Point Clouds Time Shifted IMU Preintegration for Temporal Calibration in Incremental Visual-Inertial Initialization KeystoneDepth: History in 3D
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1