{"title":"Combining IMM Method with Particle filters for 3D maneuvering target tracking","authors":"P. H. Foo, G. Ng","doi":"10.1109/ICIF.2007.4407974","DOIUrl":null,"url":null,"abstract":"The interacting multiple model (IMM) algorithm is a widely accepted state estimation scheme for solving maneuvering target tracking problems, which are generally nonlinear. During the IMM filtering process, serious errors can arise when a Gaussian mixture of posterior probability density functions is approximated by a single Gaussian. Particle filters (PFs) are effective in dealing with nonlinearity and non-Gaussianity. This work considers an IMM algorithm that includes a constant velocity model, a constant acceleration model and a 3D turning rate (3DTR) model for tracking three-dimensional (3D) target motion, using various combinations of nonlinear filters. In existing literature on combining IMM and particle filtering techniques to tackle difficult target maneuvers, a PF is usually used in every model In comparison, simulation results show that by using a computationally economical PF in the 3DTR model and Kalman filters in the remaining models, superior performance can be achieved with significant reduction in computational costs.","PeriodicalId":298941,"journal":{"name":"2007 10th International Conference on Information Fusion","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 10th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2007.4407974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
The interacting multiple model (IMM) algorithm is a widely accepted state estimation scheme for solving maneuvering target tracking problems, which are generally nonlinear. During the IMM filtering process, serious errors can arise when a Gaussian mixture of posterior probability density functions is approximated by a single Gaussian. Particle filters (PFs) are effective in dealing with nonlinearity and non-Gaussianity. This work considers an IMM algorithm that includes a constant velocity model, a constant acceleration model and a 3D turning rate (3DTR) model for tracking three-dimensional (3D) target motion, using various combinations of nonlinear filters. In existing literature on combining IMM and particle filtering techniques to tackle difficult target maneuvers, a PF is usually used in every model In comparison, simulation results show that by using a computationally economical PF in the 3DTR model and Kalman filters in the remaining models, superior performance can be achieved with significant reduction in computational costs.