Online mining of data streams: applications, techniques and progress

Haixun Wang, J. Pei, Philip S. Yu
{"title":"Online mining of data streams: applications, techniques and progress","authors":"Haixun Wang, J. Pei, Philip S. Yu","doi":"10.1109/ICDE.2005.101","DOIUrl":null,"url":null,"abstract":"In this paper, we focus on the differences between mining static large data sets and data streams. Over the years, the database and data mining community have learned valuable lessons from mining static large data sets, and developed many useful algorithms and tools for this purpose. The paper aims at providing a shortcut to the current frontier of stream mining research. We emphasize the research problems, the inherent technical challenges and the latest results. Particularly, the paper highlights new challenges and potential research interests. Research community has been interested in the integration between data mining tasks and database management systems.","PeriodicalId":297231,"journal":{"name":"21st International Conference on Data Engineering (ICDE'05)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"21st International Conference on Data Engineering (ICDE'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2005.101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this paper, we focus on the differences between mining static large data sets and data streams. Over the years, the database and data mining community have learned valuable lessons from mining static large data sets, and developed many useful algorithms and tools for this purpose. The paper aims at providing a shortcut to the current frontier of stream mining research. We emphasize the research problems, the inherent technical challenges and the latest results. Particularly, the paper highlights new challenges and potential research interests. Research community has been interested in the integration between data mining tasks and database management systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据流的在线挖掘:应用、技术和进展
在本文中,我们着重于挖掘静态大数据集和数据流之间的区别。多年来,数据库和数据挖掘社区从挖掘静态大型数据集中学到了宝贵的经验,并为此开发了许多有用的算法和工具。本文旨在为当前河流开采研究的前沿提供一条捷径。我们强调研究问题,固有的技术挑战和最新成果。特别指出了新的挑战和潜在的研究方向。数据挖掘任务与数据库管理系统之间的集成一直是研究界关注的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proactive caching for spatial queries in mobile environments MoDB: database system for synthesizing human motion Integrating data from disparate sources: a mass collaboration approach ViteX: a streaming XPath processing system Efficient data management on lightweight computing devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1