Arman Iranfar, F. Terraneo, Gabor Csordas, Marina Zapater, W. Fornaciari, David Atienza Alonso
{"title":"Dynamic Thermal Management with Proactive Fan Speed Control Through Reinforcement Learning","authors":"Arman Iranfar, F. Terraneo, Gabor Csordas, Marina Zapater, W. Fornaciari, David Atienza Alonso","doi":"10.23919/DATE48585.2020.9116510","DOIUrl":null,"url":null,"abstract":"Dynamic Thermal Management (DTM) has become a major challenge since it directly affects Multiprocessors Systems-on-chip (MPSoCs) performance, power consumption, and reliability. In this work, we propose a transient fan model, enabling adaptive fan speed control simulation for efficient DTM. Our model is validated through a thermal test chip achieving less than 2°C error in the worst case. With multiple fan speeds, however, the DTM design space grows significantly, which can ultimately make conventional solutions impractical. We address this challenge through a reinforcement learning-based solution to proactively determine the number of active cores, operating frequency, and fan speed. The proposed solution is able to reduce fan power by up to 40% compared to a DTM with constant fan speed with less than 1% performance degradation. Also, compared to a state-of-the-art DTM technique our solution improves the performance by up to 19% for the same fan power.","PeriodicalId":289525,"journal":{"name":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE48585.2020.9116510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Dynamic Thermal Management (DTM) has become a major challenge since it directly affects Multiprocessors Systems-on-chip (MPSoCs) performance, power consumption, and reliability. In this work, we propose a transient fan model, enabling adaptive fan speed control simulation for efficient DTM. Our model is validated through a thermal test chip achieving less than 2°C error in the worst case. With multiple fan speeds, however, the DTM design space grows significantly, which can ultimately make conventional solutions impractical. We address this challenge through a reinforcement learning-based solution to proactively determine the number of active cores, operating frequency, and fan speed. The proposed solution is able to reduce fan power by up to 40% compared to a DTM with constant fan speed with less than 1% performance degradation. Also, compared to a state-of-the-art DTM technique our solution improves the performance by up to 19% for the same fan power.