Dynamic Thermal Management with Proactive Fan Speed Control Through Reinforcement Learning

Arman Iranfar, F. Terraneo, Gabor Csordas, Marina Zapater, W. Fornaciari, David Atienza Alonso
{"title":"Dynamic Thermal Management with Proactive Fan Speed Control Through Reinforcement Learning","authors":"Arman Iranfar, F. Terraneo, Gabor Csordas, Marina Zapater, W. Fornaciari, David Atienza Alonso","doi":"10.23919/DATE48585.2020.9116510","DOIUrl":null,"url":null,"abstract":"Dynamic Thermal Management (DTM) has become a major challenge since it directly affects Multiprocessors Systems-on-chip (MPSoCs) performance, power consumption, and reliability. In this work, we propose a transient fan model, enabling adaptive fan speed control simulation for efficient DTM. Our model is validated through a thermal test chip achieving less than 2°C error in the worst case. With multiple fan speeds, however, the DTM design space grows significantly, which can ultimately make conventional solutions impractical. We address this challenge through a reinforcement learning-based solution to proactively determine the number of active cores, operating frequency, and fan speed. The proposed solution is able to reduce fan power by up to 40% compared to a DTM with constant fan speed with less than 1% performance degradation. Also, compared to a state-of-the-art DTM technique our solution improves the performance by up to 19% for the same fan power.","PeriodicalId":289525,"journal":{"name":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE48585.2020.9116510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Dynamic Thermal Management (DTM) has become a major challenge since it directly affects Multiprocessors Systems-on-chip (MPSoCs) performance, power consumption, and reliability. In this work, we propose a transient fan model, enabling adaptive fan speed control simulation for efficient DTM. Our model is validated through a thermal test chip achieving less than 2°C error in the worst case. With multiple fan speeds, however, the DTM design space grows significantly, which can ultimately make conventional solutions impractical. We address this challenge through a reinforcement learning-based solution to proactively determine the number of active cores, operating frequency, and fan speed. The proposed solution is able to reduce fan power by up to 40% compared to a DTM with constant fan speed with less than 1% performance degradation. Also, compared to a state-of-the-art DTM technique our solution improves the performance by up to 19% for the same fan power.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过强化学习实现主动风扇转速控制的动态热管理
动态热管理(DTM)直接影响到多处理器片上系统(mpsoc)的性能、功耗和可靠性,因此已经成为一个重大挑战。在这项工作中,我们提出了一个瞬态风扇模型,实现了高效DTM的自适应风扇转速控制仿真。我们的模型通过热测试芯片进行验证,在最坏的情况下误差小于2°C。然而,随着多个风扇转速的增加,DTM的设计空间会显著增加,这最终会使传统的解决方案变得不切实际。我们通过一种基于强化学习的解决方案来应对这一挑战,该解决方案可以主动确定活动内核的数量、工作频率和风扇速度。与恒定风扇转速的DTM相比,该解决方案能够将风扇功率降低高达40%,而性能下降不到1%。此外,与最先进的DTM技术相比,我们的解决方案在相同风扇功率的情况下将性能提高了19%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In-Memory Resistive RAM Implementation of Binarized Neural Networks for Medical Applications Towards Formal Verification of Optimized and Industrial Multipliers A 100KHz-1GHz Termination-dependent Human Body Communication Channel Measurement using Miniaturized Wearable Devices Computational SRAM Design Automation using Pushed-Rule Bitcells for Energy-Efficient Vector Processing PIM-Aligner: A Processing-in-MRAM Platform for Biological Sequence Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1