Factor selection and regression for forecasting relief food demand

Xing-Ling Wang, Xue-Lian Wu, Bing-Yu Sun
{"title":"Factor selection and regression for forecasting relief food demand","authors":"Xing-Ling Wang, Xue-Lian Wu, Bing-Yu Sun","doi":"10.1109/ICNC.2012.6234609","DOIUrl":null,"url":null,"abstract":"Predicting relief food demand effectively and accurately after nature disasters is a key to maintain the life of victims. Currently, the main methods for forecasting relief food are based on the experts and the predication results are influenced by the experiences of the experts. So how to predicate the relief food demand based on the obtained nature disaster cases is a very important problem. In this paper we present a novel method to predicate the relief food demand using support vector machine. To select the factors which have influence on relief food demand, recursive feature elimination algorithm is adopted. The experimental results on real disaster cases of Hubei province of China prove the performance of the proposed method.","PeriodicalId":404981,"journal":{"name":"2012 8th International Conference on Natural Computation","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 8th International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2012.6234609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Predicting relief food demand effectively and accurately after nature disasters is a key to maintain the life of victims. Currently, the main methods for forecasting relief food are based on the experts and the predication results are influenced by the experiences of the experts. So how to predicate the relief food demand based on the obtained nature disaster cases is a very important problem. In this paper we present a novel method to predicate the relief food demand using support vector machine. To select the factors which have influence on relief food demand, recursive feature elimination algorithm is adopted. The experimental results on real disaster cases of Hubei province of China prove the performance of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
救灾粮食需求预测的因子选择与回归
在自然灾害发生后,有效准确地预测救灾粮食需求是维持灾民生命的关键。目前,救灾粮食预测的主要方法是依靠专家,预测结果受专家经验的影响。因此,如何根据已获得的自然灾害案例来预测救灾粮食需求是一个非常重要的问题。本文提出了一种利用支持向量机预测救灾粮食需求的新方法。为了选择影响救济粮食需求的因素,采用递归特征消去算法。湖北省实际灾害案例的实验结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The model about the affection regulation based on partial least regression in the Human-computer interaction HSAQEA based reliability redundancy optimization for complex system Static error correction of the sensor based on SVR Hybrid flexible neural tree for exchange rates forecasting Some comparison on whole-proteome phylogeny of large dsDNA viruses based on dynamical language approach and feature frequency profiles method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1