Detection of Myocardial Infarction using Autonomic Nervous System, Gaussian Mixture Model and Artificial Neural Network

M. B. Terzi, V. Arikan
{"title":"Detection of Myocardial Infarction using Autonomic Nervous System, Gaussian Mixture Model and Artificial Neural Network","authors":"M. B. Terzi, V. Arikan","doi":"10.1109/TIPTEKNO50054.2020.9299275","DOIUrl":null,"url":null,"abstract":"In this study, a new technique which detects anomalies in skin sympathetic nerve activity (SKNA) and ECG by using state-of- the-art signal processing and machine learning methods is developed to perform the robust detection of myocardial infarction (MI). For this purpose, a signal processing technique that simultaneously obtains SKNA and ECG from wideband recordings on PTB-EKG database is developed. By using preprocessed data, a novel feature extraction technique which obtains SKNA features that are critical for the reliable detection of MI is developed. By using extracted features, a supervised learning technique based on artificial neural network (ANN) and an unsupervised learning technique based on Gaussian mixture model (GMM) are developed to perform the robust detection of SKNA anomalies. A Neyman-Pearson type of approach is developed to perform the robust detection of outliers that correspond to MI. The performance results of the proposed technique over PTB-EKG database showed that the technique provides highly reliable detection of MI by performing the robust detection of SKNA anomalies. Therefore, in cases where the diagnostic information of ECG is not sufficient for the reliable diagnosis of MI, the proposed technique can provide early diagnosis of the disease, which can lead to a significant reduction in the mortality rates of cardiovascular diseases.","PeriodicalId":426945,"journal":{"name":"2020 Medical Technologies Congress (TIPTEKNO)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Medical Technologies Congress (TIPTEKNO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TIPTEKNO50054.2020.9299275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a new technique which detects anomalies in skin sympathetic nerve activity (SKNA) and ECG by using state-of- the-art signal processing and machine learning methods is developed to perform the robust detection of myocardial infarction (MI). For this purpose, a signal processing technique that simultaneously obtains SKNA and ECG from wideband recordings on PTB-EKG database is developed. By using preprocessed data, a novel feature extraction technique which obtains SKNA features that are critical for the reliable detection of MI is developed. By using extracted features, a supervised learning technique based on artificial neural network (ANN) and an unsupervised learning technique based on Gaussian mixture model (GMM) are developed to perform the robust detection of SKNA anomalies. A Neyman-Pearson type of approach is developed to perform the robust detection of outliers that correspond to MI. The performance results of the proposed technique over PTB-EKG database showed that the technique provides highly reliable detection of MI by performing the robust detection of SKNA anomalies. Therefore, in cases where the diagnostic information of ECG is not sufficient for the reliable diagnosis of MI, the proposed technique can provide early diagnosis of the disease, which can lead to a significant reduction in the mortality rates of cardiovascular diseases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自主神经系统、高斯混合模型和人工神经网络检测心肌梗死
在本研究中,开发了一种新技术,通过使用最先进的信号处理和机器学习方法来检测皮肤交感神经活动(SKNA)和心电图的异常,以执行心肌梗死(MI)的鲁棒检测。为此,开发了一种从PTB-EKG数据库的宽带记录中同时获得SKNA和ECG的信号处理技术。通过对数据进行预处理,提出了一种新的特征提取技术,该技术可以获得对心肌梗死可靠检测至关重要的SKNA特征。利用提取的特征,提出了基于人工神经网络(ANN)的监督学习技术和基于高斯混合模型(GMM)的无监督学习技术,实现了对SKNA异常的鲁棒检测。开发了一种Neyman-Pearson类型的方法来执行与MI对应的异常值的鲁棒检测。所提出的技术在PTB-EKG数据库上的性能结果表明,该技术通过执行SKNA异常的鲁棒检测,提供了高度可靠的MI检测。因此,在心电图诊断信息不足以可靠诊断心肌梗死的情况下,该技术可以提供疾病的早期诊断,从而显著降低心血管疾病的死亡率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multiclass Classification of Brain Cancer with Machine Learning Algorithms Digital Filter Design Based on ARDUINO and Its Applications Use of Velocity Vectors for Cell Classification Under Acoustic Drifting Forces Development of a Full Face Mask during the COVID-19 Epidemic Spread Period TIPTEKNO 2020 Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1