Autonomic Computing Challenges in Fully Autonomous Precision Agriculture

Jayson G. Boubin, J. Chumley, Christopher Stewart, S. Khanal
{"title":"Autonomic Computing Challenges in Fully Autonomous Precision Agriculture","authors":"Jayson G. Boubin, J. Chumley, Christopher Stewart, S. Khanal","doi":"10.1109/ICAC.2019.00012","DOIUrl":null,"url":null,"abstract":"Precision agriculture examines crop fields, gathers data, analyzes crop health and informs field management. This data driven approach can reduce fertilizer runoff, prevent crop disease and increase yield. Frequent data collection improves outcomes, but also increases operating costs. Fully autonomous aerial systems (FAAS) can capture detailed images of crop fields without human intervention. They can reduce operating costs significantly. However, FAAS software must embed agricultural expertise to decide where to fly, which images to capture and when to land. This paper explores fully autonomous precision agriculture where FAAS map crop fields frequently. We have designed hardware and software architecture. We use unmanned aerial systems, edge computing components and software driven by reinforcement learning and ensemble models. In early results, we have collected data from an Ohio cornfield. We use this data to simulate a FAAS modeling crop yield. Our results (1) show that our approach predicts yield well and (2) can quantify computational demand. Computational costs can be prohibitive. We discuss how research on adaptive systems can reduce costs and enable fully autonomous precision agriculture. We also provide our simulation tools and dataset as part of our open source FAAS middleware, SoftewarePilot.","PeriodicalId":442645,"journal":{"name":"2019 IEEE International Conference on Autonomic Computing (ICAC)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Autonomic Computing (ICAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAC.2019.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

Precision agriculture examines crop fields, gathers data, analyzes crop health and informs field management. This data driven approach can reduce fertilizer runoff, prevent crop disease and increase yield. Frequent data collection improves outcomes, but also increases operating costs. Fully autonomous aerial systems (FAAS) can capture detailed images of crop fields without human intervention. They can reduce operating costs significantly. However, FAAS software must embed agricultural expertise to decide where to fly, which images to capture and when to land. This paper explores fully autonomous precision agriculture where FAAS map crop fields frequently. We have designed hardware and software architecture. We use unmanned aerial systems, edge computing components and software driven by reinforcement learning and ensemble models. In early results, we have collected data from an Ohio cornfield. We use this data to simulate a FAAS modeling crop yield. Our results (1) show that our approach predicts yield well and (2) can quantify computational demand. Computational costs can be prohibitive. We discuss how research on adaptive systems can reduce costs and enable fully autonomous precision agriculture. We also provide our simulation tools and dataset as part of our open source FAAS middleware, SoftewarePilot.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自主计算在完全自主精准农业中的挑战
精准农业检查农田,收集数据,分析作物健康状况,并通知田间管理。这种数据驱动的方法可以减少肥料流失,防止作物病害并提高产量。频繁的数据收集改善了结果,但也增加了运营成本。完全自主航空系统(FAAS)可以在没有人为干预的情况下捕获农田的详细图像。它们可以显著降低运营成本。然而,FAAS软件必须嵌入农业专业知识,以决定飞到哪里,捕捉哪些图像以及何时着陆。本文探讨了FAAS频繁绘制农田地图的全自动精准农业。我们设计了硬件和软件架构。我们使用无人机系统、边缘计算组件和由强化学习和集成模型驱动的软件。在早期的结果中,我们收集了俄亥俄州玉米地的数据。我们使用这些数据来模拟FAAS模型作物产量。我们的结果(1)表明我们的方法可以很好地预测产量,(2)可以量化计算需求。计算成本可能令人望而却步。我们讨论了适应性系统的研究如何降低成本并实现完全自主的精准农业。我们还提供我们的仿真工具和数据集,作为我们的开源FAAS中间件SoftewarePilot的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chisel: Reshaping Queries to Trim Latency in Key-Value Stores GreenRoute: A Generalizable Fuel-Saving Vehicular Navigation Service Characterizing Disk Health Degradation and Proactively Protecting Against Disk Failures for Reliable Storage Systems Adaptively Accelerating Map-Reduce/Spark with GPUs: A Case Study Enhancing Learning-Enabled Software Systems to Address Environmental Uncertainty
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1