SOM-TC: Self-Organizing Map for Hierarchical Trajectory Clustering

P. Dewan, R. Ganti, M. Srivatsa
{"title":"SOM-TC: Self-Organizing Map for Hierarchical Trajectory Clustering","authors":"P. Dewan, R. Ganti, M. Srivatsa","doi":"10.1109/ICDCS.2017.244","DOIUrl":null,"url":null,"abstract":"Trajectory clustering techniques help discover interesting insights from moving object data, including common routes for people and vehicles, anomalous sub-trajectories, etc. Existing trajectory clustering techniques fail to take in to account the uncertainty present in location data. In this paper, we investigate the problem of clustering trajectory data and propose a novel algorithm for clustering similar full and sub-trajectories together while modeling uncertainty in this data. We describe the necessary pre-processing techniques for clustering trajectory data, namely techniques to discretize raw location data using Possible World semantics to capture the inherent uncertainty in location data, and to segment full trajectories in to meaningful sub-trajectories. As a baseline, we extend the well known K-means algorithm to cluster trajectory data. We then describe and evaluate a new trajectory clustering algorithm, SOM-TC (Self-Organizing Map Based Trajectory Clustering), that is inspired from the self-organizing map technique and is at least 4x faster than the baseline K-means and current density based clustering approaches.","PeriodicalId":127689,"journal":{"name":"2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS)","volume":"15 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2017.244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Trajectory clustering techniques help discover interesting insights from moving object data, including common routes for people and vehicles, anomalous sub-trajectories, etc. Existing trajectory clustering techniques fail to take in to account the uncertainty present in location data. In this paper, we investigate the problem of clustering trajectory data and propose a novel algorithm for clustering similar full and sub-trajectories together while modeling uncertainty in this data. We describe the necessary pre-processing techniques for clustering trajectory data, namely techniques to discretize raw location data using Possible World semantics to capture the inherent uncertainty in location data, and to segment full trajectories in to meaningful sub-trajectories. As a baseline, we extend the well known K-means algorithm to cluster trajectory data. We then describe and evaluate a new trajectory clustering algorithm, SOM-TC (Self-Organizing Map Based Trajectory Clustering), that is inspired from the self-organizing map technique and is at least 4x faster than the baseline K-means and current density based clustering approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
层次轨迹聚类的自组织映射
轨迹聚类技术有助于从移动对象数据中发现有趣的见解,包括人员和车辆的共同路线,异常子轨迹等。现有的轨迹聚类技术没有考虑到位置数据的不确定性。本文研究了轨迹数据的聚类问题,提出了一种基于不确定性建模的全轨迹和子轨迹聚类算法。我们描述了聚类轨迹数据的必要预处理技术,即使用可能世界语义对原始位置数据进行离散化以捕获位置数据中固有的不确定性,并将完整轨迹分割为有意义的子轨迹的技术。作为基线,我们将众所周知的K-means算法扩展到聚类轨迹数据。然后,我们描述并评估了一种新的轨迹聚类算法SOM-TC(基于自组织地图的轨迹聚类),该算法受到自组织地图技术的启发,比基线K-means和当前基于密度的聚类方法至少快4倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proximity Awareness Approach to Enhance Propagation Delay on the Bitcoin Peer-to-Peer Network ACTiCLOUD: Enabling the Next Generation of Cloud Applications The Internet of Things and Multiagent Systems: Decentralized Intelligence in Distributed Computing Decentralised Runtime Monitoring for Access Control Systems in Cloud Federations The Case for Using Content-Centric Networking for Distributing High-Energy Physics Software
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1