Towards open-set face recognition using hashing functions

R. H. Vareto, Samira Silva, F. Costa, W. R. Schwartz
{"title":"Towards open-set face recognition using hashing functions","authors":"R. H. Vareto, Samira Silva, F. Costa, W. R. Schwartz","doi":"10.1109/BTAS.2017.8272751","DOIUrl":null,"url":null,"abstract":"Face Recognition is one of the most relevant problems in computer vision as we consider its importance to areas such as surveillance, forensics and psychology. Furthermore, open-set face recognition has a large room for improvement since only few researchers have focused on it. In fact, a real-world recognition system has to cope with several unseen individuals and determine whether a given face image is associated with a subject registered in a gallery of known individuals. In this work, we combine hashing functions and classification methods to estimate when probe samples are known (i.e., belong to the gallery set). We carry out experiments with partial least squares and neural networks and show how response value histograms tend to behave for known and unknown individuals whenever we test a probe sample. In addition, we conduct experiments on FRGCv1, PubFig83 and VGGFace to show that our method continues effective regardless of the dataset difficulty.","PeriodicalId":372008,"journal":{"name":"2017 IEEE International Joint Conference on Biometrics (IJCB)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2017.8272751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

Face Recognition is one of the most relevant problems in computer vision as we consider its importance to areas such as surveillance, forensics and psychology. Furthermore, open-set face recognition has a large room for improvement since only few researchers have focused on it. In fact, a real-world recognition system has to cope with several unseen individuals and determine whether a given face image is associated with a subject registered in a gallery of known individuals. In this work, we combine hashing functions and classification methods to estimate when probe samples are known (i.e., belong to the gallery set). We carry out experiments with partial least squares and neural networks and show how response value histograms tend to behave for known and unknown individuals whenever we test a probe sample. In addition, we conduct experiments on FRGCv1, PubFig83 and VGGFace to show that our method continues effective regardless of the dataset difficulty.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用哈希函数实现开集人脸识别
人脸识别是计算机视觉中最相关的问题之一,因为我们认为它对监视、法医学和心理学等领域都很重要。此外,由于研究人员较少,开放集人脸识别还有很大的改进空间。事实上,现实世界的识别系统必须处理几个看不见的个体,并确定给定的人脸图像是否与已知个体库中注册的对象相关联。在这项工作中,我们结合了哈希函数和分类方法来估计探针样本何时已知(即属于画廊集)。我们用偏最小二乘法和神经网络进行了实验,并展示了每当我们测试探测样本时,响应值直方图对已知和未知个体的行为倾向。此外,我们在FRGCv1、PubFig83和VGGFace上进行了实验,表明无论数据集难度如何,我们的方法都是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accuracy evaluation of handwritten signature verification: Rethinking the random-skilled forgeries dichotomy SSERBC 2017: Sclera segmentation and eye recognition benchmarking competition Age and gender classification using local appearance descriptors from facial components Evaluation of a 3D-aided pose invariant 2D face recognition system Towards pre-alignment of near-infrared iris images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1