An Event Based Machine Learning Framework for Predictive Maintenance in Industry 4.0

Matteo Calabrese, Martin Cimmino, Martina Manfrin, F. Fiume, D. Kapetis, M. Mengoni, S. Ceccacci, E. Frontoni, M. Paolanti, Alberto Carrotta, G. Toscano
{"title":"An Event Based Machine Learning Framework for Predictive Maintenance in Industry 4.0","authors":"Matteo Calabrese, Martin Cimmino, Martina Manfrin, F. Fiume, D. Kapetis, M. Mengoni, S. Ceccacci, E. Frontoni, M. Paolanti, Alberto Carrotta, G. Toscano","doi":"10.1115/detc2019-97917","DOIUrl":null,"url":null,"abstract":"\n Predictive Maintenance concerns the smart monitoring of machine to avoid possible future failures, since because it is better to intervene before the damage occurs, saving time and money. In this paper, a Predictive Maintenance methodology based on Machine learning approach is presented and it is applied to a real cutting machine, a woodworking machinery in a real industrial group, producing accurate estimations. This kind of strategy is important to deal with maintenance problems given the ever increasing need to reduce downtime and associated costs. The Predictive Maintenance methodology implemented allows dynamical decision rules that have to be considered for maintenance prediction using a combined approach on Azure Machine Learning Studio. The Three models (RF, GBM and XGBM) allowed the accurately predict machine down ever gripped bearing thanks to the pre-processing phases.","PeriodicalId":166402,"journal":{"name":"Volume 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-97917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Predictive Maintenance concerns the smart monitoring of machine to avoid possible future failures, since because it is better to intervene before the damage occurs, saving time and money. In this paper, a Predictive Maintenance methodology based on Machine learning approach is presented and it is applied to a real cutting machine, a woodworking machinery in a real industrial group, producing accurate estimations. This kind of strategy is important to deal with maintenance problems given the ever increasing need to reduce downtime and associated costs. The Predictive Maintenance methodology implemented allows dynamical decision rules that have to be considered for maintenance prediction using a combined approach on Azure Machine Learning Studio. The Three models (RF, GBM and XGBM) allowed the accurately predict machine down ever gripped bearing thanks to the pre-processing phases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
工业4.0中基于事件的预测性维护机器学习框架
预测性维护关注的是机器的智能监控,以避免未来可能出现的故障,因为最好在损坏发生之前进行干预,从而节省时间和金钱。本文提出了一种基于机器学习方法的预测性维护方法,并将其应用于实际工业集团中的切割机、木工机械,产生了准确的估计。考虑到不断增加的减少停机时间和相关成本的需求,这种策略对于处理维护问题非常重要。实现的预测性维护方法允许使用Azure Machine Learning Studio的组合方法进行维护预测时必须考虑的动态决策规则。由于预处理阶段,三个模型(RF, GBM和XGBM)可以准确预测机器的下夹持轴承。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fractional-Order Extreme Learning Machine With Mittag-Leffler Distribution Heuristic Approach for Warehouse Resources and Production Planning Optimization: An Industry Case Study Electrode-Skin Impedance Component Estimation in the Time-Domain Chattering-Free Finite-Time Stability of a Class of Fractional-Order Nonlinear Systems Modeling, Simulation and Assessment of a Hybrid Electric Ferry: Case Study for Mid-Size Ferry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1