{"title":"Integration on a Compact Connected Lie Group","authors":"L. Tu","doi":"10.2307/j.ctvrdf1gz.19","DOIUrl":null,"url":null,"abstract":"This chapter explores integration on a compact connected Lie group. One of the great advantages of working with a compact Lie group is the possibility of extending the notion of averaging from a finite group to the compact Lie group. If the compact Lie group is connected, then there exists a unique bi-invariant top-degree form with total integral 1, which simplifies the presentation of averaging. The averaging operator is useful for constructing invariant objects. For example, suppose a compact connected Lie group G acts smoothly on the left on a manifold M. Given any C∞ differential k-form ω on M, by averaging all the left translates of ω over G, one can produce a C∞ invariant k-form on M. As another example, on a G-manifold one can average all translates of a Riemannian metric to produce an invariant Riemann metric.","PeriodicalId":272846,"journal":{"name":"Introductory Lectures on Equivariant Cohomology","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Introductory Lectures on Equivariant Cohomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctvrdf1gz.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This chapter explores integration on a compact connected Lie group. One of the great advantages of working with a compact Lie group is the possibility of extending the notion of averaging from a finite group to the compact Lie group. If the compact Lie group is connected, then there exists a unique bi-invariant top-degree form with total integral 1, which simplifies the presentation of averaging. The averaging operator is useful for constructing invariant objects. For example, suppose a compact connected Lie group G acts smoothly on the left on a manifold M. Given any C∞ differential k-form ω on M, by averaging all the left translates of ω over G, one can produce a C∞ invariant k-form on M. As another example, on a G-manifold one can average all translates of a Riemannian metric to produce an invariant Riemann metric.