{"title":"Mapping the Internet: Geolocating Routers by Using Machine Learning","authors":"A. Prieditis, Gang Chen","doi":"10.1109/COMGEO.2013.17","DOIUrl":null,"url":null,"abstract":"Knowing the geolocation of a router can help to predict the geolocation of an Internet user, which is important for local advertising, fraud detection, and geo-fencing applications. For example, the geolocation of the last router on the path to a user is a reasonable guess for the user's geolocation. Current methods for geolocating a router are based on parsing a router's name to find geographic hints. Unfortunately, these methods are noisy and often provide no hints. This paper presents results on using machine learning methods to \"sharpen\" a router's noisy location based on the time delay between one or more routers and a target router or end user IP address. The novelty of this approach is that geolocation of the one or more routers is not required to be known.","PeriodicalId":383309,"journal":{"name":"2013 Fourth International Conference on Computing for Geospatial Research and Application","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fourth International Conference on Computing for Geospatial Research and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMGEO.2013.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Knowing the geolocation of a router can help to predict the geolocation of an Internet user, which is important for local advertising, fraud detection, and geo-fencing applications. For example, the geolocation of the last router on the path to a user is a reasonable guess for the user's geolocation. Current methods for geolocating a router are based on parsing a router's name to find geographic hints. Unfortunately, these methods are noisy and often provide no hints. This paper presents results on using machine learning methods to "sharpen" a router's noisy location based on the time delay between one or more routers and a target router or end user IP address. The novelty of this approach is that geolocation of the one or more routers is not required to be known.