Modeling spatial layout of features for real world scenario RGB-D action recognition

Michal Koperski, F. Brémond
{"title":"Modeling spatial layout of features for real world scenario RGB-D action recognition","authors":"Michal Koperski, F. Brémond","doi":"10.1109/AVSS.2016.7738023","DOIUrl":null,"url":null,"abstract":"Depth information improves skeleton detection, thus skeleton based methods are the most popular methods in RGB-D action recognition. But skeleton detection working range is limited in terms of distance and view-point. Most of the skeleton based action recognition methods ignore fact that skeleton may be missing. Local points-of-interest (POIs) do not require skeleton detection. But they fail if they cannot detect enough POIs e.g. amount of motion in action is low. Most of them ignore spatial-location of features. We cope with the above problems by employing people detector instead of skeleton detector. We propose method to encode spatial-layout of features inside bounding box. We also introduce descriptor which encodes static information for actions with low amount of motion. We validate our approach on: 3 public data-sets. The results show that our method is competitive to skeleton based methods, while requiring much simpler people detection instead of skeleton detection.","PeriodicalId":438290,"journal":{"name":"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"193 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2016.7738023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Depth information improves skeleton detection, thus skeleton based methods are the most popular methods in RGB-D action recognition. But skeleton detection working range is limited in terms of distance and view-point. Most of the skeleton based action recognition methods ignore fact that skeleton may be missing. Local points-of-interest (POIs) do not require skeleton detection. But they fail if they cannot detect enough POIs e.g. amount of motion in action is low. Most of them ignore spatial-location of features. We cope with the above problems by employing people detector instead of skeleton detector. We propose method to encode spatial-layout of features inside bounding box. We also introduce descriptor which encodes static information for actions with low amount of motion. We validate our approach on: 3 public data-sets. The results show that our method is competitive to skeleton based methods, while requiring much simpler people detection instead of skeleton detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
真实场景RGB-D动作识别特征空间布局建模
深度信息改进了骨骼检测,因此基于骨骼的方法是RGB-D动作识别中最常用的方法。但是骨骼检测的工作范围受到距离和视点的限制。大多数基于骨架的动作识别方法都忽略了骨架可能缺失的事实。局部兴趣点(poi)不需要骨架检测。但如果它们不能检测到足够的poi,例如动作中的运动量很低,它们就会失败。它们大多忽略了特征的空间定位。为了解决以上问题,我们采用了人体探测器而不是骨骼探测器。提出了对边界框内特征的空间布局进行编码的方法。我们还引入了描述符,对低运动量动作的静态信息进行编码。我们在3个公共数据集上验证了我们的方法。结果表明,该方法与基于骨架的方法相比具有一定的竞争力,但需要更简单的人物检测而不是骨架检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gender recognition from face images with trainable COSFIRE filters Time-frequency analysis for audio event detection in real scenarios Improving surface normals based action recognition in depth images Unsupervised data association for metric learning in the context of multi-shot person re-identification Tracking-based detection of driving distraction from vehicular interior video
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1