Spatial and Temporal Averaging Windows and Their Impact on Forecasting: Exactly Solvable Examples

Ying Li, S. Stechmann
{"title":"Spatial and Temporal Averaging Windows and Their Impact on Forecasting: Exactly Solvable Examples","authors":"Ying Li, S. Stechmann","doi":"10.1515/mcwf-2018-0002","DOIUrl":null,"url":null,"abstract":"Abstract In making weather and climate predictions, the goal is often not to predict the instantaneous, local value of temperature, wind speed, or rainfall; instead, the goal is often to predict these quantities after averaging in time and/or space-for example, over one day or one week. What is the impact of spatial and/or temporal averaging on forecasting skill?Here this question is investigated using simple stochastic models that can be solved exactly analytically. While the models are idealized, their exact solutions allow clear results that are not affected by errors from numerical simulations or from random sampling. As a model of time series of oscillatory weather fluctuations, the complex Ornstein-Uhlenbeck process is used. To furthermore investigate spatial averaging, the stochastic heat equation is used as an idealized spatiotemporal model for moisture and rainfall. Space averaging and time averaging are shown to have distinctly different impacts on prediction skill. Spatial averaging leads to improved forecast skill, in line with some forms of basic intuition. Time averaging, on the other hand, is more subtle: it may either increase or decrease forecast skill. The subtle effects of time averaging are seen to arise from the relative definitions of the time averaging window and the lead time. These results should help in understanding and comparing forecasts with different temporal and spatial averaging windows.","PeriodicalId":106200,"journal":{"name":"Mathematics of Climate and Weather Forecasting","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Climate and Weather Forecasting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcwf-2018-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract In making weather and climate predictions, the goal is often not to predict the instantaneous, local value of temperature, wind speed, or rainfall; instead, the goal is often to predict these quantities after averaging in time and/or space-for example, over one day or one week. What is the impact of spatial and/or temporal averaging on forecasting skill?Here this question is investigated using simple stochastic models that can be solved exactly analytically. While the models are idealized, their exact solutions allow clear results that are not affected by errors from numerical simulations or from random sampling. As a model of time series of oscillatory weather fluctuations, the complex Ornstein-Uhlenbeck process is used. To furthermore investigate spatial averaging, the stochastic heat equation is used as an idealized spatiotemporal model for moisture and rainfall. Space averaging and time averaging are shown to have distinctly different impacts on prediction skill. Spatial averaging leads to improved forecast skill, in line with some forms of basic intuition. Time averaging, on the other hand, is more subtle: it may either increase or decrease forecast skill. The subtle effects of time averaging are seen to arise from the relative definitions of the time averaging window and the lead time. These results should help in understanding and comparing forecasts with different temporal and spatial averaging windows.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时空平均窗及其对预测的影响:精确可解的例子
在进行天气和气候预测时,目标往往不是预测温度、风速或降雨量的瞬时、局部值;相反,目标通常是在时间和/或空间平均后预测这些数量,例如,在一天或一周内。空间和/或时间平均对预测技能的影响是什么?这里用简单的随机模型来研究这个问题,它可以精确地解析解决。虽然这些模型是理想化的,但它们的精确解允许得到不受数值模拟或随机抽样误差影响的清晰结果。作为振荡天气波动的时间序列模型,使用了复杂的Ornstein-Uhlenbeck过程。为了进一步研究空间平均,采用随机热方程作为湿度和降雨的理想时空模型。空间平均和时间平均对预测能力的影响有显著差异。空间平均可以提高预测能力,这与某些形式的基本直觉是一致的。另一方面,时间平均则更为微妙:它可能会提高或降低预测技巧。时间平均的微妙影响可以从时间平均窗口和提前期的相对定义中看出。这些结果将有助于理解和比较不同时空平均窗下的预报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Expanding Grids for Efficient Cloud Dynamics Simulations Across Scales On strongly nonlinear gravity waves in a vertically sheared atmosphere Shallow-cloud impact on climate and uncertainty: A simple stochastic model Pattern formation in clouds via Turing instabilities Estimation of seasonal boundaries using temperature data: a case of northwest part of Bangladesh
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1