{"title":"MPC-Based Control of Autonomous Vehicles With Localized Path Planning for Obstacle Avoidance Under Uncertainties","authors":"Sai Rajeev Devaragudi, Bo Chen","doi":"10.1115/detc2019-97712","DOIUrl":null,"url":null,"abstract":"\n This paper presents a Model Predictive Control (MPC) approach for longitudinal and lateral control of autonomous vehicles with a real-time local path planning algorithm. A heuristic graph search method (A* algorithm) combined with piecewise Bezier curve generation is implemented for obstacle avoidance in autonomous driving applications. Constant time headway control is implemented for a longitudinal motion to track lead vehicles and maintain a constant time gap. MPC is used to control the steering angle and the tractive force of the autonomous vehicle. Furthermore, a new method of developing Advanced Driver Assistance Systems (ADAS) algorithms and vehicle controllers using Model-In-the-Loop (MIL) testing is explored with the use of PreScan®. With PreScan®, various traffic scenarios are modeled and the sensor data are simulated by using physics-based sensor models, which are fed to the controller for data processing and motion planning. Obstacle detection and collision avoidance are demonstrated using the presented MPC controller.","PeriodicalId":166402,"journal":{"name":"Volume 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-97712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper presents a Model Predictive Control (MPC) approach for longitudinal and lateral control of autonomous vehicles with a real-time local path planning algorithm. A heuristic graph search method (A* algorithm) combined with piecewise Bezier curve generation is implemented for obstacle avoidance in autonomous driving applications. Constant time headway control is implemented for a longitudinal motion to track lead vehicles and maintain a constant time gap. MPC is used to control the steering angle and the tractive force of the autonomous vehicle. Furthermore, a new method of developing Advanced Driver Assistance Systems (ADAS) algorithms and vehicle controllers using Model-In-the-Loop (MIL) testing is explored with the use of PreScan®. With PreScan®, various traffic scenarios are modeled and the sensor data are simulated by using physics-based sensor models, which are fed to the controller for data processing and motion planning. Obstacle detection and collision avoidance are demonstrated using the presented MPC controller.