Region-free Safe Screening Tests for $\ell_{1}$-penalized Convex Problems

C. Herzet, Clément Elvira, H. Dang
{"title":"Region-free Safe Screening Tests for $\\ell_{1}$-penalized Convex Problems","authors":"C. Herzet, Clément Elvira, H. Dang","doi":"10.23919/eusipco55093.2022.9909532","DOIUrl":null,"url":null,"abstract":"We address the problem of safe screening for $\\ell_{1}$-penalized convex regression/classification problems, i.e., the identification of zero coordinates of the solutions. Unlike previous contributions of the literature, we propose a screening methodology which does not require the knowledge of a so-called “safe region”. Our approach does not rely on any other assumption than convexity (in particular, no strong-convexity hypothesis is needed) and therefore applies to a wide family of convex problems. When the Fenchel conjugate of the data-fidelity term is strongly convex, we show that the popular “GAP sphere test” proposed by Fercoq et al. can be recovered as a particular case of our methodology (up to a minor modification). We illustrate numerically the performance of our procedure on the “sparse support vector machine classification” problem.","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We address the problem of safe screening for $\ell_{1}$-penalized convex regression/classification problems, i.e., the identification of zero coordinates of the solutions. Unlike previous contributions of the literature, we propose a screening methodology which does not require the knowledge of a so-called “safe region”. Our approach does not rely on any other assumption than convexity (in particular, no strong-convexity hypothesis is needed) and therefore applies to a wide family of convex problems. When the Fenchel conjugate of the data-fidelity term is strongly convex, we show that the popular “GAP sphere test” proposed by Fercoq et al. can be recovered as a particular case of our methodology (up to a minor modification). We illustrate numerically the performance of our procedure on the “sparse support vector machine classification” problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
$\ell_{1}$惩罚凸问题的无区域安全筛选测试
我们解决了$\ell_{1}$惩罚凸回归/分类问题的安全筛选问题,即解的零坐标的识别。与以前的文献贡献不同,我们提出了一种不需要所谓“安全区域”知识的筛选方法。我们的方法不依赖于除了凸性之外的任何其他假设(特别是,不需要强凸性假设),因此适用于广泛的凸问题。当数据保真度项的Fenchel共轭是强凸时,我们表明Fercoq等人提出的流行的“GAP球检验”可以作为我们方法的一个特殊情况(直到一个小的修改)恢复。在“稀疏支持向量机分类”问题上,我们用数值例子说明了我们的方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessing Bias in Face Image Quality Assessment Electrically evoked auditory steady state response detection in cochlear implant recipients using a system identification approach Uncovering cortical layers with multi-exponential analysis: a region of interest study Phaseless Passive Synthetic Aperture Imaging with Regularized Wirtinger Flow The faster proximal algorithm, the better unfolded deep learning architecture ? The study case of image denoising
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1