{"title":"Knowledge Transfer in Automatic Optimisation of Reconfigurable Designs","authors":"Maciej Kurek, M. Deisenroth, W. Luk, T. Todman","doi":"10.1109/FCCM.2016.29","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach for automatic optimisation of reconfigurable design parameters based on knowledge transfer. The key idea is to make use of insights derived from optimising related designs to benefit future optimisations. We show how to use designs targeting one device to speed up optimisation of another device. The proposed approach is evaluated based on various applications including computational finance and seismic imaging. It is capable of achieving up to 35% reduction in optimisation time in producing designs with similar performance, compared to alternative optimisation methods.","PeriodicalId":113498,"journal":{"name":"2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2016.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
This paper presents a novel approach for automatic optimisation of reconfigurable design parameters based on knowledge transfer. The key idea is to make use of insights derived from optimising related designs to benefit future optimisations. We show how to use designs targeting one device to speed up optimisation of another device. The proposed approach is evaluated based on various applications including computational finance and seismic imaging. It is capable of achieving up to 35% reduction in optimisation time in producing designs with similar performance, compared to alternative optimisation methods.