{"title":"Constant-load energy recovery memory for efficient high-speed operation","authors":"Joohee Kim, M. Papaefthymiou","doi":"10.1145/1013235.1013296","DOIUrl":null,"url":null,"abstract":"This paper proposes a constant-load SRAM design for highly efficient recovery of bit-line energy with a resonant power-clock supply. For each bit-line pair, the proposed SRAM includes a dummy bit-line of sufficient capacitance to ensure that the memory array presents a constant capacitive load to the power-clock, regardless of data or operation. Using a single-phase power-clock waveform, read and write operations are performed with single-cycle latency. The efficiency of the proposed SRAM has been assessed through simulations of 128/spl times/256 arrays with 0.25 /spl mu/m process parameters and a 42/58 write/non-write access pattern. Assuming lossless power-clock generation, the proposed SRAM dissipates 37% less power than its conventional counterpart at 400 MHz/2.5 V. When the overhead of power-clock generation is included, the proposed SRAM dissipates at least 27% less power than conventional SRAM.","PeriodicalId":120002,"journal":{"name":"Proceedings of the 2004 International Symposium on Low Power Electronics and Design (IEEE Cat. No.04TH8758)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 International Symposium on Low Power Electronics and Design (IEEE Cat. No.04TH8758)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1013235.1013296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
This paper proposes a constant-load SRAM design for highly efficient recovery of bit-line energy with a resonant power-clock supply. For each bit-line pair, the proposed SRAM includes a dummy bit-line of sufficient capacitance to ensure that the memory array presents a constant capacitive load to the power-clock, regardless of data or operation. Using a single-phase power-clock waveform, read and write operations are performed with single-cycle latency. The efficiency of the proposed SRAM has been assessed through simulations of 128/spl times/256 arrays with 0.25 /spl mu/m process parameters and a 42/58 write/non-write access pattern. Assuming lossless power-clock generation, the proposed SRAM dissipates 37% less power than its conventional counterpart at 400 MHz/2.5 V. When the overhead of power-clock generation is included, the proposed SRAM dissipates at least 27% less power than conventional SRAM.