Data-Driven Emulation of Mobile Access Networks

Ali Safari Khatouni, Martino Trevisan, Danilo Giordano
{"title":"Data-Driven Emulation of Mobile Access Networks","authors":"Ali Safari Khatouni, Martino Trevisan, Danilo Giordano","doi":"10.23919/CNSM46954.2019.9012691","DOIUrl":null,"url":null,"abstract":"Network monitoring is fundamental to understand network evolution and behavior. However, monitoring studies have the main limitation of running new experiments when the phenomenon under analysis is over e.g., congestion. To overcome this limitation, network emulation is of vital importance for network testing and research experiments either in wired and mobile networks. When it comes to mobile networks, the variety of technical characteristics, coupled with the opaque network configurations, make realistic network emulation a challenging task.In this paper, we address this issue leveraging a large scale dataset composed of 500M network latency measurements in Mobile BroadBand networks. By using this dataset, we create 51 different network latency profiles based on the Mobile BroadBand operator, the radio access technology and signal strength. These profiles are then processed to make them compatible with the tc-netem emulation tool. Finally, we show that, despite the limitation of current tc-netem emulation tool, Generative Adversarial Networks are a promising solution used to create realistic temporal emulation.We believe that this work could be the first step toward a comprehensive data-driven network emulation. For this, we make our profiles and codes available to foster further studies in these directions.","PeriodicalId":273818,"journal":{"name":"2019 15th International Conference on Network and Service Management (CNSM)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th International Conference on Network and Service Management (CNSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CNSM46954.2019.9012691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Network monitoring is fundamental to understand network evolution and behavior. However, monitoring studies have the main limitation of running new experiments when the phenomenon under analysis is over e.g., congestion. To overcome this limitation, network emulation is of vital importance for network testing and research experiments either in wired and mobile networks. When it comes to mobile networks, the variety of technical characteristics, coupled with the opaque network configurations, make realistic network emulation a challenging task.In this paper, we address this issue leveraging a large scale dataset composed of 500M network latency measurements in Mobile BroadBand networks. By using this dataset, we create 51 different network latency profiles based on the Mobile BroadBand operator, the radio access technology and signal strength. These profiles are then processed to make them compatible with the tc-netem emulation tool. Finally, we show that, despite the limitation of current tc-netem emulation tool, Generative Adversarial Networks are a promising solution used to create realistic temporal emulation.We believe that this work could be the first step toward a comprehensive data-driven network emulation. For this, we make our profiles and codes available to foster further studies in these directions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
移动接入网的数据驱动仿真
网络监控是理解网络演变和行为的基础。然而,监测研究的主要限制是在分析现象结束时进行新的实验,例如拥堵。为了克服这一限制,网络仿真对于有线和移动网络中的网络测试和研究实验至关重要。当涉及到移动网络时,各种各样的技术特性,加上不透明的网络配置,使得真实的网络仿真成为一项具有挑战性的任务。在本文中,我们利用由移动宽带网络中的500M网络延迟测量组成的大规模数据集来解决这个问题。通过使用该数据集,我们基于移动宽带运营商、无线接入技术和信号强度创建了51种不同的网络延迟概况。然后对这些配置文件进行处理,使它们与tc-netem仿真工具兼容。最后,我们表明,尽管目前的tc-netem仿真工具的局限性,生成对抗网络是一个有前途的解决方案,用于创建逼真的时间模拟。我们相信,这项工作可能是迈向全面的数据驱动网络仿真的第一步。为此,我们提供了我们的简介和代码,以促进这些方向的进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Flow-based Throughput Prediction using Deep Learning and Real-World Network Traffic Learning From Evolving Network Data for Dependable Botnet Detection Exploring NAT Detection and Host Identification Using Machine Learning Lumped Markovian Estimation for Wi-Fi Channel Utilization Prediction An Access Control Implementation Targeting Resource-constrained Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1