{"title":"Worst-Case Optimal Join Algorithms: Techniques, Results, and Open Problems","authors":"H. Ngo","doi":"10.1145/3196959.3196990","DOIUrl":null,"url":null,"abstract":"Worst-case optimal join algorithms are the class of join algorithms whose runtime match the worst-case output size of a given join query. While the first provably worse-case optimal join algorithm was discovered relatively recently, the techniques and results surrounding these algorithms grow out of decades of research from a wide range of areas, intimately connecting graph theory, algorithms, information theory, constraint satisfaction, database theory, and geometric inequalities. These ideas are not just paperware: in addition to academic project implementations, two variations of such algorithms are the work-horse join algorithms of commercial database and data analytics engines. This paper aims to be a brief introduction to the design and analysis of worst-case optimal join algorithms. We discuss the key techniques for proving runtime and output size bounds. We particularly focus on the fascinating connection between join algorithms and information theoretic inequalities, and the idea of how one can turn a proof into an algorithm. Finally, we conclude with a representative list of fundamental open problems in this area.","PeriodicalId":344370,"journal":{"name":"Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","volume":"190 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3196959.3196990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48
Abstract
Worst-case optimal join algorithms are the class of join algorithms whose runtime match the worst-case output size of a given join query. While the first provably worse-case optimal join algorithm was discovered relatively recently, the techniques and results surrounding these algorithms grow out of decades of research from a wide range of areas, intimately connecting graph theory, algorithms, information theory, constraint satisfaction, database theory, and geometric inequalities. These ideas are not just paperware: in addition to academic project implementations, two variations of such algorithms are the work-horse join algorithms of commercial database and data analytics engines. This paper aims to be a brief introduction to the design and analysis of worst-case optimal join algorithms. We discuss the key techniques for proving runtime and output size bounds. We particularly focus on the fascinating connection between join algorithms and information theoretic inequalities, and the idea of how one can turn a proof into an algorithm. Finally, we conclude with a representative list of fundamental open problems in this area.