Automated Continual Learning of Defect Identification in Coherent Diffraction Imaging

Orcun Yildiz, Henry Chan, Krishnan Raghavan, W. Judge, M. Cherukara, Prasanna Balaprakash, S. Sankaranarayanan, T. Peterka
{"title":"Automated Continual Learning of Defect Identification in Coherent Diffraction Imaging","authors":"Orcun Yildiz, Henry Chan, Krishnan Raghavan, W. Judge, M. Cherukara, Prasanna Balaprakash, S. Sankaranarayanan, T. Peterka","doi":"10.1109/AI4S56813.2022.00006","DOIUrl":null,"url":null,"abstract":"X-ray Bragg coherent diffraction imaging (BCDI) is widely used for materials characterization. However, obtaining X-ray diffraction data is difficult and computationally intensive. Here, we introduce a machine learning approach to identify crystalline line defects in samples from the raw coherent diffraction data. To automate this process, we compose a workflow coupling coherent diffraction data generation with training and inference of deep neural network defect classifiers. In particular, we adopt a continual learning approach, where we generate training and inference data as needed based on the accuracy of the defect classifier instead of all training data generated a priori. The results show that our approach improves the accuracy of defect classifiers while using much fewer samples of data.","PeriodicalId":262536,"journal":{"name":"2022 IEEE/ACM International Workshop on Artificial Intelligence and Machine Learning for Scientific Applications (AI4S)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Workshop on Artificial Intelligence and Machine Learning for Scientific Applications (AI4S)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AI4S56813.2022.00006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

X-ray Bragg coherent diffraction imaging (BCDI) is widely used for materials characterization. However, obtaining X-ray diffraction data is difficult and computationally intensive. Here, we introduce a machine learning approach to identify crystalline line defects in samples from the raw coherent diffraction data. To automate this process, we compose a workflow coupling coherent diffraction data generation with training and inference of deep neural network defect classifiers. In particular, we adopt a continual learning approach, where we generate training and inference data as needed based on the accuracy of the defect classifier instead of all training data generated a priori. The results show that our approach improves the accuracy of defect classifiers while using much fewer samples of data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
相干衍射成像缺陷识别的自动连续学习
x射线布拉格相干衍射成像(BCDI)广泛应用于材料表征。然而,获得x射线衍射数据是困难和计算密集的。在这里,我们引入了一种机器学习方法来从原始相干衍射数据中识别样品中的晶线缺陷。为了实现这一过程的自动化,我们构建了一个耦合相干衍射数据生成与深度神经网络缺陷分类器的训练和推理的工作流程。特别地,我们采用持续学习的方法,我们根据缺陷分类器的准确性生成所需的训练和推理数据,而不是先验地生成所有的训练数据。结果表明,我们的方法在使用更少的数据样本的同时提高了缺陷分类器的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Case Study on Coupling OpenFOAM with Different Machine Learning Frameworks Scalable Integration of Computational Physics Simulations with Machine Learning AI4S 22 Workshop Organization Ensuring AI For Science is Science: Making Randomness Portable Pattern-based Autotuning of OpenMP Loops using Graph Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1