The SAIL speaker diarization system for analysis of spontaneous meetings

Kyu Jeong Han, P. Georgiou, Shrikanth S. Narayanan
{"title":"The SAIL speaker diarization system for analysis of spontaneous meetings","authors":"Kyu Jeong Han, P. Georgiou, Shrikanth S. Narayanan","doi":"10.1109/MMSP.2008.4665214","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel approach to speaker diarization of spontaneous meetings in our own multimodal SmartRoom environment. The proposed speaker diarization system first applies a sequential clustering concept to segmentation of a given audio data source, and then performs agglomerative hierarchical clustering for speaker-specific classification (or speaker clustering) of speech segments. The speaker clustering algorithm utilizes an incremental Gaussian mixture cluster modeling strategy, and a stopping point estimation method based on information change rate. Through experiments on various meeting conversation data of approximately 200 minutes total length, this system is demonstrated to provide diarization error rate of 18.90% on average.","PeriodicalId":402287,"journal":{"name":"2008 IEEE 10th Workshop on Multimedia Signal Processing","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE 10th Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2008.4665214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we propose a novel approach to speaker diarization of spontaneous meetings in our own multimodal SmartRoom environment. The proposed speaker diarization system first applies a sequential clustering concept to segmentation of a given audio data source, and then performs agglomerative hierarchical clustering for speaker-specific classification (or speaker clustering) of speech segments. The speaker clustering algorithm utilizes an incremental Gaussian mixture cluster modeling strategy, and a stopping point estimation method based on information change rate. Through experiments on various meeting conversation data of approximately 200 minutes total length, this system is demonstrated to provide diarization error rate of 18.90% on average.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于分析自发会议的SAIL扬声器分类系统
在本文中,我们提出了一种新颖的方法,在我们自己的多模态SmartRoom环境中对自发会议的演讲者进行分组。该系统首先将顺序聚类概念应用于给定音频数据源的分割,然后对语音片段进行特定于说话人的聚类(或说话人聚类)。说话人聚类算法采用增量高斯混合聚类建模策略和基于信息变化率的停止点估计方法。通过对总时长约200分钟的各种会议会话数据的实验,证明该系统的拨号错误率平均为18.90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting doubly compressed JPEG images by using Mode Based First Digit Features Music tracking in audio streams from movies 3-D mesh representation and retrieval using Isomap manifold Adaptive wavelet coding of the depth map for stereoscopic view synthesis Fast encoding algorithms for video coding with adaptive interpolation filters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1