A 0.186-pJ per Bit Latch-Based True Random Number Generator with Mismatch Compensation and Random Noise Enhancement

Ruilin Zhang, Xingyu Wang, Luying Wang, Xinpeng Chen, F. Yang, Kunyang Liu, H. Shinohara
{"title":"A 0.186-pJ per Bit Latch-Based True Random Number Generator with Mismatch Compensation and Random Noise Enhancement","authors":"Ruilin Zhang, Xingyu Wang, Luying Wang, Xinpeng Chen, F. Yang, Kunyang Liu, H. Shinohara","doi":"10.23919/VLSICircuits52068.2021.9492474","DOIUrl":null,"url":null,"abstract":"A calibration and feedback control-free latch-based true random-number generator (TRNG) is presented. It features a mismatch self-compensation and a random noise enhancement technique to drastically improve the noise-to-mismatch ratio. By employing the XOR function of only 4-bit entropy sources, the proposed TRNG can efficiently operate across a wide voltage (0.3~1.0 V) and temperature (−20~100°C) range. An 8-bit von Neumann with waiting (VN8W) post-processing technique is used to extract full entropy bitstreams, which have been verified by the NIST-SP 800-22 randomness tests. Robustness against supply noise injection attack is also demonstrated. The proposed TRNG is fabricated in 130-nm CMOS technology and achieves the state-of-the-art energy of 0.186 pJ/bit at 0.3 V with a core area of 661 um2 (0.039 MF2).","PeriodicalId":106356,"journal":{"name":"2021 Symposium on VLSI Circuits","volume":"63 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSICircuits52068.2021.9492474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

A calibration and feedback control-free latch-based true random-number generator (TRNG) is presented. It features a mismatch self-compensation and a random noise enhancement technique to drastically improve the noise-to-mismatch ratio. By employing the XOR function of only 4-bit entropy sources, the proposed TRNG can efficiently operate across a wide voltage (0.3~1.0 V) and temperature (−20~100°C) range. An 8-bit von Neumann with waiting (VN8W) post-processing technique is used to extract full entropy bitstreams, which have been verified by the NIST-SP 800-22 randomness tests. Robustness against supply noise injection attack is also demonstrated. The proposed TRNG is fabricated in 130-nm CMOS technology and achieves the state-of-the-art energy of 0.186 pJ/bit at 0.3 V with a core area of 661 um2 (0.039 MF2).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于失配补偿和随机噪声增强的0.186 pj / Bit锁存真随机数发生器
提出了一种基于校准和反馈无控制锁存的真随机数发生器(TRNG)。它具有失配自补偿和随机噪声增强技术,大大提高了噪声与失配比。通过使用4位熵源的异或函数,该TRNG可以在宽电压(0.3~1.0 V)和温度(- 20~100°C)范围内有效地工作。采用8位冯·诺伊曼等待后处理技术(VN8W)提取全熵比特流,并通过NIST-SP 800-22随机测试验证。同时还证明了该方法对电源噪声注入攻击的鲁棒性。所提出的TRNG采用130纳米CMOS技术制造,在0.3 V下实现了0.186 pJ/bit的最新能量,核心面积为661 um2 (0.039 MF2)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PIMCA: A 3.4-Mb Programmable In-Memory Computing Accelerator in 28nm for On-Chip DNN Inference A 24–31 GHz Reference Oversampling ADPLL Achieving FoMjitter−N of -269.3 dB A 6.78 MHz Wireless Power Transfer System for Simultaneous Charging of Multiple Receivers with Maximum Efficiency using Adaptive Magnetic Field Distributor IC Enhanced Core Circuits for scaling DRAM: 0.7V VCC with Long Retention 138ms at 125°C and Random Row/Column Access Times Accelerated by 1.5ns A Sub-mW Dual-Engine ML Inference System-on-Chip for Complete End-to-End Face-Analysis at the Edge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1