Chaotic self adaptive particle swarm approach for solving economic dispatch problem with valve-point effect

C. Rani, D. Kothari, K. Busawon
{"title":"Chaotic self adaptive particle swarm approach for solving economic dispatch problem with valve-point effect","authors":"C. Rani, D. Kothari, K. Busawon","doi":"10.1109/ICPEC.2013.6527690","DOIUrl":null,"url":null,"abstract":"This research work presents a Chaotic Self Adaptive Particle Swarm Optimization (CSAPSO) algorithm in order to solve the Economic Dispatch (ED) problem. The main purpose of the work is to derive a simple and effective method for optimum generation dispatch to minimize the generation cost power networks by considering several non-linear characteristics of the generator such as valve point effect, prohibited operating zones and ramp rate limits. A chaotic local search operator is introduced in the proposed algorithm to avoid premature convergence. Simulation studies are carried out, using MATLAB software, to show the effectiveness of the proposed optimization method. The applicability and high feasibility of the proposed method is validated on three different test systems. Results show that the CSAPSO is more powerful than other algorithms.","PeriodicalId":176900,"journal":{"name":"2013 International Conference on Power, Energy and Control (ICPEC)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Power, Energy and Control (ICPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPEC.2013.6527690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research work presents a Chaotic Self Adaptive Particle Swarm Optimization (CSAPSO) algorithm in order to solve the Economic Dispatch (ED) problem. The main purpose of the work is to derive a simple and effective method for optimum generation dispatch to minimize the generation cost power networks by considering several non-linear characteristics of the generator such as valve point effect, prohibited operating zones and ramp rate limits. A chaotic local search operator is introduced in the proposed algorithm to avoid premature convergence. Simulation studies are carried out, using MATLAB software, to show the effectiveness of the proposed optimization method. The applicability and high feasibility of the proposed method is validated on three different test systems. Results show that the CSAPSO is more powerful than other algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求解具有阀点效应的经济调度问题的混沌自适应粒子群方法
为了解决经济调度问题,提出了一种混沌自适应粒子群优化算法(CSAPSO)。本文的主要目的是通过考虑发电机的阀点效应、禁止运行区域和斜坡速率限制等非线性特性,推导出一种简单有效的优化发电调度方法,使电网发电成本最小化。为了避免算法过早收敛,在算法中引入了混沌局部搜索算子。利用MATLAB软件进行了仿真研究,验证了所提优化方法的有效性。在三个不同的测试系统上验证了该方法的适用性和高可行性。结果表明,该算法比其他算法更强大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cascaded seven level inverter with reduced number of switches using level shifting PWM technique Design, analysis and simulation of linear controller of a STATCOM for reactive power compensation on variation of DC link voltage Transmission line faults detection, classification, and location using Discrete Wavelet Transform New multilevel inverter topology with reduced number of switches using advanced modulation strategies Performance analysis of PV fed single phase T-source inverter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1