Optimized Message Passing Schedules for LDPC Decoding

P. Radosavljevic, A. de Baynast, Joseph R. Cavallaro
{"title":"Optimized Message Passing Schedules for LDPC Decoding","authors":"P. Radosavljevic, A. de Baynast, Joseph R. Cavallaro","doi":"10.1109/ACSSC.2005.1599818","DOIUrl":null,"url":null,"abstract":"The major drawback of the LDPC codes versus the turbo-codes is their comparative low convergence speed: 25-30 iterations vs. 8-10 iterations for turbo-codes. Recently, Hocevar showed by simulations that the convergence rate of the LDPC decoder can be accelerated by exploiting a `turbo-scheduling' applied on the bit-node messages (rows of the parity check matrix). In this paper, we show analytically that the convergence rate for this type of scheduling is about two times increased for most of the regular LDPC codes. Second we prove that `turbo-scheduling' applied on the rows of the parity check matrix is identical belief propagation algorithm as standard message passing algorithm. Furthermore, we propose two new message passing schedules: 1) a turbo-scheduling is applied on the check-node messages (columns of the parity check matrix); and 2) a hybrid version of both previous schedules where the turbo-effect is applied on both check-nodes and bit-nodes. Frame error rate simulations validate the effectiveness of the proposed schedules","PeriodicalId":326489,"journal":{"name":"Conference Record of the Thirty-Ninth Asilomar Conference onSignals, Systems and Computers, 2005.","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"74","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Thirty-Ninth Asilomar Conference onSignals, Systems and Computers, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2005.1599818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 74

Abstract

The major drawback of the LDPC codes versus the turbo-codes is their comparative low convergence speed: 25-30 iterations vs. 8-10 iterations for turbo-codes. Recently, Hocevar showed by simulations that the convergence rate of the LDPC decoder can be accelerated by exploiting a `turbo-scheduling' applied on the bit-node messages (rows of the parity check matrix). In this paper, we show analytically that the convergence rate for this type of scheduling is about two times increased for most of the regular LDPC codes. Second we prove that `turbo-scheduling' applied on the rows of the parity check matrix is identical belief propagation algorithm as standard message passing algorithm. Furthermore, we propose two new message passing schedules: 1) a turbo-scheduling is applied on the check-node messages (columns of the parity check matrix); and 2) a hybrid version of both previous schedules where the turbo-effect is applied on both check-nodes and bit-nodes. Frame error rate simulations validate the effectiveness of the proposed schedules
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LDPC解码的优化消息传递调度
与涡轮码相比,LDPC码的主要缺点是收敛速度相对较低:25-30次迭代与涡轮码的8-10次迭代。最近,Hocevar通过模拟表明,LDPC解码器的收敛速度可以通过利用对位节点消息(奇偶校验矩阵的行)应用的“涡轮调度”来加速。在本文中,我们解析地证明了对于大多数规则LDPC码,这种调度的收敛速度大约提高了两倍。其次,我们证明了应用于奇偶校验矩阵行上的“涡轮调度”是与标准消息传递算法相同的信念传播算法。在此基础上,我们提出了两种新的消息传递调度:1)对校验节点消息(奇偶校验矩阵的列)采用涡轮调度;2)前两个时间表的混合版本,其中涡轮效应应用于检查节点和位节点。帧误码率仿真验证了所提方案的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Construction of M-QAM STCC Based on QPSK STCC Multi-Source Cooperative Networks with Distributed Convolutional Coding Synchronization of Multiple UWB Piconets Source and Channel Coding for Quasi-Static Fading Channels A Joint Precoding and Scheduling Technique for Multiuser MIMO Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1