Bayesian analysis of the Truncated Power Lindley under different loss functions for censored data

د/ محمود عبد المنعم محمد التحیوى, dr\ Mohamed S. Hamouda Hamouda
{"title":"Bayesian analysis of the Truncated Power Lindley under different loss functions for censored data","authors":"د/ محمود عبد المنعم محمد التحیوى, dr\\ Mohamed S. Hamouda Hamouda","doi":"10.21608/masf.2022.250910","DOIUrl":null,"url":null,"abstract":"\"We perform a Bayesian analysis of the upper truncated power Lindley distribution based on type II censored data. Using various loss functions, including the generalized quadratic, entropy and Linex loss functions, we obtain Bayes estimators and their corresponding posterior risks. As tractable analytical forms of these estimators are out of reach, we propose Markov chain Monte-Carlo (MCMC) based simulation approach to study their performance. Moreover, given initial values for the parameters of the model, we obtain maximum likelihood estimators. Furthermore, we compare their performance with that of the Bayesian estimators using Pitman's closeness criterion and integrated mean square error. Finally, we illustrate our approach through an example with real data.\"","PeriodicalId":213394,"journal":{"name":"المجلة العلمیة للدراسات والبحوث المالیة والإداریة‎","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"المجلة العلمیة للدراسات والبحوث المالیة والإداریة‎","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/masf.2022.250910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

"We perform a Bayesian analysis of the upper truncated power Lindley distribution based on type II censored data. Using various loss functions, including the generalized quadratic, entropy and Linex loss functions, we obtain Bayes estimators and their corresponding posterior risks. As tractable analytical forms of these estimators are out of reach, we propose Markov chain Monte-Carlo (MCMC) based simulation approach to study their performance. Moreover, given initial values for the parameters of the model, we obtain maximum likelihood estimators. Furthermore, we compare their performance with that of the Bayesian estimators using Pitman's closeness criterion and integrated mean square error. Finally, we illustrate our approach through an example with real data."
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
截尾数据在不同损失函数下截断功率Lindley的贝叶斯分析
“我们基于II型截尾数据对上截尾功率林德利分布进行贝叶斯分析。利用各种损失函数,包括广义二次损失函数、熵损失函数和Linex损失函数,我们得到了贝叶斯估计量及其对应的后验风险。由于这些估计器难以实现可处理的解析形式,我们提出了基于马尔可夫链蒙特卡罗(MCMC)的仿真方法来研究它们的性能。此外,给定模型参数的初始值,我们得到了极大似然估计。此外,我们使用Pitman的接近准则和积分均方误差将它们的性能与贝叶斯估计进行了比较。最后,我们通过一个实际数据的例子来说明我们的方法。”
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
تأثیر أزمة كوفید-19 على الأداء المالی للشركات: دراسة تطبیقیة على قطاع السیاحة فی مصر أثر استخدام تحلیلات البیانات الضخمة على تحسین جودة تقاریر الأعمال المتكاملة للشركات المقیدة فی سوق الأوراق المالیة المصریة "دراسة میدانیة" الدور المرتقب للمراجع الخارجی فی كشف الاحتیال باستخدام نماذج الغش لتحسین جودة المراجعة "دراسة میدانیة بالجهاز المركزی للمحاسبات" دور إستراتیجیة التحول الرقمى فی تطویر منظومة وظائف إدارة الموارد البشریة (بالتطبیق على البنوك الحكومیة المصریة) تحلیل العلاقة بین نموذج الأداء الاستراتیجی وقیمة المنشأة فی إطار المعیار المحاسبى المصرى رقم (41) القطاعات التشغیلیة (دراسة حالة)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1