Towards a Bayesian prognostic framework for high-availability clusters

Premathas Somasekaram, R. Calinescu
{"title":"Towards a Bayesian prognostic framework for high-availability clusters","authors":"Premathas Somasekaram, R. Calinescu","doi":"10.1145/3492323.3495583","DOIUrl":null,"url":null,"abstract":"Critical applications deployed on cloud and in-house information technology infrastructures use software solutions known as high-availability clusters (HACs) to ensure higher availability. Our paper introduces a Bayesian prognostic (BP) framework that improves the ability of HACs to (i) predict component failures that can be resolved by reinitialising the failed component and (ii) propagate and predict failures in high-level components when the component failure cannot be resolved through reinitialisation. Preliminary experiments presented in the paper demonstrate that this BP framework can reduce the downtime for an enterprise application subjected to a wide range of injected faults by between 5.5 and 7.9 times compared to the availability achieved by the open-source HAC ClusterLabs stack (Pacemaker/Corosync).","PeriodicalId":440884,"journal":{"name":"Proceedings of the 14th IEEE/ACM International Conference on Utility and Cloud Computing Companion","volume":"330 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 14th IEEE/ACM International Conference on Utility and Cloud Computing Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3492323.3495583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Critical applications deployed on cloud and in-house information technology infrastructures use software solutions known as high-availability clusters (HACs) to ensure higher availability. Our paper introduces a Bayesian prognostic (BP) framework that improves the ability of HACs to (i) predict component failures that can be resolved by reinitialising the failed component and (ii) propagate and predict failures in high-level components when the component failure cannot be resolved through reinitialisation. Preliminary experiments presented in the paper demonstrate that this BP framework can reduce the downtime for an enterprise application subjected to a wide range of injected faults by between 5.5 and 7.9 times compared to the availability achieved by the open-source HAC ClusterLabs stack (Pacemaker/Corosync).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向高可用性集群的贝叶斯预测框架
部署在云和内部信息技术基础设施上的关键应用程序使用称为高可用性集群(HACs)的软件解决方案来确保更高的可用性。我们的论文介绍了一个贝叶斯预测(BP)框架,该框架提高了HACs的能力:(i)预测可以通过重新初始化故障组件来解决的组件故障,以及(ii)当组件故障无法通过重新初始化来解决时,在高级组件中传播和预测故障。论文中提出的初步实验表明,与开源HAC ClusterLabs堆栈(Pacemaker/Corosync)实现的可用性相比,该BP框架可以将企业应用程序遭受大范围注入故障的停机时间减少5.5到7.9倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blockchain-based distributed platform for accountable medical data sharing An empirical analysis of LADA diabetes case, control and variable importance Estimating the capacities of function-as-a-service functions Session details: International Workshop on Machine Learning and Health Informatics (MLHI) Alcoholism detection via GLCM and particle swarm optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1